
CUDA Threads

Mark Greenstreet

CpSc 418 – Mar. 7, 2016

Threads organization: grids, blocks, threads, and warps.
Synchronization
Examples

Mark Greenstreet CUDA Threads CS 418 – Mar. 7, 2016 1 / 16

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_7
https://en.wikipedia.org/wiki/2016
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_7
https://en.wikipedia.org/wiki/2016


Thread organization: grids, blocks and threads

Lots of nVidia jargon here.
I When a kernel is launched, it creates an array of threads.
I This array is called a grid.

A grid is organized as an array of blocks
Each block is an array of threads
Why so many details?

I Switching between blocks is done (I infer) by software in the GPU.
I Switching between threads in a block is done by hardware.
I By distinguishing blocks from threads, the CUDA model exposes

the performance issues to the programmer.

Mark Greenstreet CUDA Threads CS 418 – Mar. 7, 2016 2 / 16

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_7
https://en.wikipedia.org/wiki/2016


A grid is an array of blocks

(1,0) (2,0) (3,0) (4,0) (5,0)

(0,1) (1,1) (2,1) (3,1) (4,1) (5,1)

(0,2) (1,2) (2,2) (3,2) (4,2) (5,2)

(0,3) (1,3) (2,3) (3,3) (4,3) (5,3)

(0,0)

A grid

Blocks are scheduled by the GPU software.
Blocks can be arranged as a 1D or 2D array.
There can be lots of blocks:

I Each dimension can be up to 216 = 65536.

Mark Greenstreet CUDA Threads CS 418 – Mar. 7, 2016 3 / 16

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_7
https://en.wikipedia.org/wiki/2016


Each block is an array of threads

(3,1) (4,1) (5,1)

(0,2) (1,2) (2,2) (3,2) (4,2) (5,2)

(0,3) (1,3) (2,3) (3,3) (4,3) (5,3)

(0,0,0)

(0,1,0)

(0,2,0)

(0,3,0)

(0,4,0)

(1,0,0)

(1,1,0)

(1,2,0)

(1,3,0)

(1,4,0)

(2,0,0)

(2,1,0)

(2,2,0)

(2,3,0)

(2,4,0)

(0,0) (1,0) (2,0) (3,0) (4,0)
(5,0)

Blocks

(0,1)

Threads

(1,1) (2,1)

Where do they put all those threads?

Threads are scheduled by the GPU hardware.
Threads can be arranged as a 1D, 2D, or 3D array.
There are a limited number of threads per block:

I The total number of threads (product of all dimensions) is at most
256 to 1024, depending on the GPU.

Mark Greenstreet CUDA Threads CS 418 – Mar. 7, 2016 4 / 16

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_7
https://en.wikipedia.org/wiki/2016


Threads and blocks: launching a kernel
Let’s say we have:

global void kernel fun(args)

To launch this kernel, we execute a statement like:
kernel fun<<<dimGrid, dimBlock>>>(actuals);

where
I dimGrid is specifies the dimension(s) of the grid (an array of

blocks):
F dimGrid can be an int, in which case the array is one dimensional of

that size.
F or, dimGrid can be a dim3, for example:

dim3(6,4,1)
F The last component of the dim3 is the z-dimension, which is ignored

when describing a grid. To avoid confusion, the standard practice it to
use a value of 1.

I dimBlock is specifies the dimension(s) of each block (an array of
threads):

F dimGrid can be an int or a dim3.
F If dimGrid is a dim3, all three dimensions are used.

Mark Greenstreet CUDA Threads CS 418 – Mar. 7, 2016 5 / 16

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_7
https://en.wikipedia.org/wiki/2016


Threads and blocks: within a kernel
With a kernel, CUDA-C provides four variables to determine the
position of a thread within the grid: blockDim, blockIdx,
threadDim, and threadIdx.
blockDim.x and blockDim.y give the size of the grid in the x-
and y-dimensions.
threadDim.x, threadDim.y, and threadDim.z give the size
of each block.
blockIdx.x and blockIdx.y give the indices of the thread’s
block within the grid. Note that:

I 0 ≤ blockIdx.x < BlockDim.x, and
I 0 ≤ blockIdx.y < BlockDim.y.

Likewise, threadIdx.x, threadIdx.y, and threadIdx.z give
the indices of the thread within its block.
Because the size of blocks are limited, it is common to use code
such as:

uint my idx = blockDim.x*blockIdx.x + threadIdx.x;

to combine the block and thread indices into a single index.
Mark Greenstreet CUDA Threads CS 418 – Mar. 7, 2016 6 / 16

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_7
https://en.wikipedia.org/wiki/2016


Bounds checking: launching kernels

Consider executing kernel fun on an array of n elements.
Because n might be large, we’ll use n/256 blocks of 256 threads.

I THINK: what if n is not a multiple of 256?
I We’ll round up to make sure we have enough threads.

The kernel launch looks like:
kernel fun<<<ceil(n/256.0), 256>>>(n, myArray);

I Why divide by 256.0 instead of 256?
I Why use ceil?

Mark Greenstreet CUDA Threads CS 418 – Mar. 7, 2016 7 / 16

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_7
https://en.wikipedia.org/wiki/2016


Bounds checking: in the kernel

The kernel launch looks like:
kernel fun<<<ceil(n/256.0), 256>>>(n, myArray);

THINK: what if n is not a multiple of 256?
I We’ll launch more than n threads?
I For example, if n==1000, then we’ll launch 4 blocks of 256 threads.

A total of 1024 threads.
I What will the last 24 threads do?

Add a test:
uint my idx = blockDim.x*blockIdx.x + threadIdx.x;
if(my idx < n) {

...
}

Mark Greenstreet CUDA Threads CS 418 – Mar. 7, 2016 8 / 16

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_7
https://en.wikipedia.org/wiki/2016


Warps
Warps refer to how the hardware executes threads.

I The programmer writes code with grid consisting of blocks of
threads.

I You can write correct code without paying attention to warps.
I But you need to think about warps to write fast code.

Each streaming multiprocessor (SM) in the GPU executes threads
in SIMD fashion.

I A warp is a collection of threads that execute together on the same
SM.

Why we care:
I It helps performance to make the number of threads in a block a

multiple of the warp size.
I Thread divergence is an issue when different threads in the same

warp follow different control paths.
Etymology: “warp” is a term from weaving:

“the threads on a loom over and under which other
threads (the weft) are passed to make cloth”

From the New Oxford American Dictionary (on my laptop).
Mark Greenstreet CUDA Threads CS 418 – Mar. 7, 2016 9 / 16

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_7
https://en.wikipedia.org/wiki/2016


A Warped Example: Reduce (part 1 of 2)
Consider a reduce of an array, data, of n elements using n/2
threads. Assume n is power of 2.
Simple code:

for(int stride = 1; stride < n; stride += stride) {
if((my idx & (stride-1)) == 0)

data[2*my idx] += data[2*my idx + stride];
syncthreads(); % see slide 13

}
Consider n == 16

I First iteration, for i in 0, . . . , 7, data[2*i] += data[2*i]+1.
Now, all the even indexed elements have their sum with their odd
counterpart.

I Second iteration, for i in 0, 2, 4, 6, data[2*i] += data[2*i]+2.
All elements with indices that are multiples of four, have their sum with the
next three elements.

I Third iteration leads with data[0] and data[8] holding sums for their
halves of the array.

I The fourth iteration puts the complete sum into data[0].

What if n==1024? See the next slide.
Mark Greenstreet CUDA Threads CS 418 – Mar. 7, 2016 10 / 16

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_7
https://en.wikipedia.org/wiki/2016


A Warped Example: Reduce (part 2 of 2)

What if n==1024?
I We have 512 threads: 16 warps of 32 threads.
I In the first iteration, all threads are active.
I In the next iteration, each warp has 16 active threads – the GPU

has to execute the code for all 16 warps, even though half the
threads do nothing.

I In subsequent iterations, the warps are more and more poorly
utilized.

We would like to pack the busy threads into the minumum number
of warps.

Mark Greenstreet CUDA Threads CS 418 – Mar. 7, 2016 11 / 16

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_7
https://en.wikipedia.org/wiki/2016


Faster Warps

for(int stride = n/2; stride > 0; stride >>= 1) {
if(my idx < stride)

data[my idx] += data[my idx] + stride;
syncthreads();

}

Consider n == 1024.
In the first iteration, there are 16 active warps – all threads in each
warp are busy.
In the second iteration, there are 8 active warps – all threads in
each active warp are busy.
Similarly, for the 3rd through 5th iterations:

I The number of active warps decreases.
I All threads in each active warp are busy.

Mark Greenstreet CUDA Threads CS 418 – Mar. 7, 2016 12 / 16

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_7
https://en.wikipedia.org/wiki/2016


Synchronization

The reduce example used syncthreads(): all the threads in
the block must execute this statement before any continue beyond
it.

I Be very careful about thread divergence.
I All threads in the block must meet at the barrier.
I They must all meet at the same barrier.

We’ll cover synchronization in more detail on March 9.

Mark Greenstreet CUDA Threads CS 418 – Mar. 7, 2016 13 / 16

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_7
https://en.wikipedia.org/wiki/2016


Some examples

See examples.cu.

Mark Greenstreet CUDA Threads CS 418 – Mar. 7, 2016 14 / 16

http://www.ugrad.cs.ubc.ca/~cs418/2015-2/lecture/03-07/examples.cu
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_7
https://en.wikipedia.org/wiki/2016


Preview

March 9: Synchronization and Scheduling
Reading: Kirk & Hwu, Chapter 4.

March 11: The GPU Memory Model 1
Reading: Kirk & Hwu, Chapter 5.

March 14: The GPU Memory Model 2
Reading: Kirk & Hwu, Chapter 5.

March 16: GPU Performance 1
Reading: Kirk & Hwu, Chapter 6.

March 18: GPU Performance 2
Reading: Kirk & Hwu, Chapter 6.

March 21: Parallel Sorting
Reading: TBD.

But of course, we’ll adjust this as we go.

Mark Greenstreet CUDA Threads CS 418 – Mar. 7, 2016 15 / 16

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_7
https://en.wikipedia.org/wiki/2016


Review

In CUDA, what is a grid, a block, and thread?
Why does CUDA allow millions of thread blocks but only 256 to
1024 threads per block?
How does a programmer specify the number of thread blocks and
number of threads when launching a CUDA kernel?
How does a thread determing its position within the thread grid?
“global memory” in CUDA programming.
Why do threads need to check their indices against array bounds?
What is a warp? Why does it matter?

Mark Greenstreet CUDA Threads CS 418 – Mar. 7, 2016 16 / 16

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_7
https://en.wikipedia.org/wiki/2016

