Introduction to CUDA

Mark Greenstreet

CpSc 418 - Mar. 29, 2016

- GPU Summary: slide 2
- CUDA
 - Data parallelism: <u>slide 6</u>
 - Program structure: <u>slide 8</u>
 - Memory: <u>slide 10</u>
 - A simple example: slide 12
 - Launching kernels: <u>slide 19</u>

GPU Summary: architecture

- Lots of cores:
 - Up to 90 or more SIMD processors.
 - Each SIMD processors has 32 pipelines.
 - This is the nVidia architecture other GPUs are similar.
- Deep, simple, execution pipelines
 - Optimized for floating point.
 - No bypassing: use multi-threading for performance.
 - Branches handled by predicated execution

"When you come to a fork in the road, take it." (Often attributed to Yogi Berra.)

- Limited on-chip memory.
 - ▶ 1 or 2 MBytes total. Big CPUs have 32-64MB of L3 cache.
 - The programmer manages data placement.

GPU Summary: Performance

- Today's processors are constrained by how much performance can you get using \sim 200 watts.
 - Moving bits around takes lots of energy.
 - Performing operations as quickly as possible takes lots of energy.
 - E ~ dt^α, where E is energy, d is distance, t is time per operation, and 1 < α < 2 depending on design details.</p>
 - ★ Corollary: $P \sim d^{\alpha+1}$. Power grows someplace between quadratically and cubically with clock period.
- How GPUs optimize performance/power
 - SIMD: instruction fetch and decode moves lots of bits. Amortize over many cores.
 - Simple pipelines: bypassing means moving bits quickly. GPUs omit bypasses.
 - High latency: avoid pipeline stages that must do a lot in a hurry.
 - Expose the memory hierarchy: let the programmer control moving data bits around.

GPU Summary: Economics

- GPUs are designed for the high-volume, consumer graphics market.
 - Amortize high design cost over a large number of units sold.
- This means GPUs aren't really optimized for scientific computing:
 - More on-chip memory would certainly help scientific computing, but not needed for graphics rendering.
 - Comparison: An nVidia GPU has about 2 MBytes of on-chip memory, an Intel Xeon can have 40MBytes or more.
 - Cache memory is about 60-70 transistors per byte.
 - A high-end nVidia GPU has 7 billion transistors, 1 or 2% for memory.
 - What if the chip were 30-40% memory?
 - better for general purpose computing
 - ★ little pay-off for graphics
 - ★ smaller distinction with Intel CPUs
- Cheap is good
 - It's the economics of cheap-computing that drives Moore's Law and all the other exponential growth-rate trends that make computing a field of intense, ongoing innovation.
 - That keeps the field in transition deal with it.

Introduction to CUDA

Programming GPUs: CUDA

- Data Parallelism
- CUDA program structure
- Memory
- Launching kernels

Data Parallelism

- When you see a for-loop:
 - Is the loop-index used as an array index?
 - Are the iterations independent?
 - If so, you probably have data-parallel code.
- Data-Parallel problems:
 - Run well on GPUs because each element (or segment) of the array can be handled by a different thread.
 - Data parallel problems are good candidate for most parallel techniques because the available parallelism grows with the problem size.
 - Compare with "task parallelism" where the problem is divided into the same number of tasks regardless of its size.

Which of the following loops are data parallel?

for (int i = 0; i < N; i++) c[i] = a[i] + b[i].dotprod = 0.0;for(int i = 0; i < N; i++) dotprod += a[i]*b[i]; for(int i = 1; i < N; i++) a[i] = 0.5 * (a[i-1] + a[i]);for (int i = 1; i < N; i++) a[i] = sqrt(a[i-1] + a[i]);for(int i = 0; i < M; i++) {</pre> for(int j = 0; i < N; j++) { sum = 0.0;for(int k = 0; i < L; k++) sum += a[i,k]*b[k,j]; c[i,j] = sum;} }

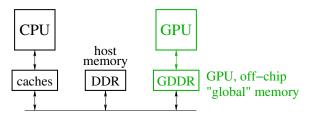
CUDA Program Structure

- A CUDA program consists of three kinds of functions:
 - Host functions:
 - * callable from code running on the host, but not the GPU.
 - run on the host CPU;
 - In CUDA C, these look like normal functions they can be preceeded by the __host__.
 - Device functions.
 - callable from code running on the GPU, but not the host.
 - run on the GPU;
 - ★ In CUDA C, these are declared with a __device__ qualifier.
 - Global functions
 - called by code running on the host CPU,
 - they execute on the GPU.
 - In CUDA C, these are declared with a __global__ qualifier.

Structure of a simple CUDA program

- A __global__ function to called by the host program to execute on the GPU.
 - There may be one or more __device__ functions as well.
- One or more host functions, including main to run on the host CPU.
 - Allocate device memory.
 - Copy data from host memory to device memory.
 - "Launch" the device kernel by calling the __global__ function.
 - Copy the result from device memory to host memory.

Execution Model: Memory



Host memory: DRAM and the CPU's caches

- Accessible to host CPU but not to GPU.
- Device memory: GDDR DRAM on the graphics card.
 - Accessible by GPU.
 - The host can initiate transfers between host memory and device memroy.
- The CUDA library includes functions to:
 - Allocate and free device memory.
 - Copy blocks between host and device memory.
 - BUT host code can't read or write the device memory directly.

More Memory

- GPUs support fairly large off-chip memory bandwidth: 200-400GB/s.
 - But this isn't fast enough to keep 1000 processors busy at 1Gflop/s each!
- The GPU has on-chip memory to help:
 - Shared memory: 16KBytes or 48KBytes.
 - Registers: 128Kbytes (256KBytes on more recent GPUs).
 - Note that we need to use each value from memory for 20 or more instructions or else the memory bandwidth will limit performance.
- GPUs also have L2 caches, around 1.5MByte in the most recent chips.
 - But I haven't found a good way to understand them from the textbook, or from other CUDA manuals.
 - The coherence/consistency guarantees seem to be pretty weak.

Example: saxpy

- saxpy ="Scalar a times x plus y".
 - The device code.
 - The host code.
 - The running saxpy

saxpy: device code

```
--global__void saxpy(uint n, float a, float *x, float *y) {
    uint i = blockIdx.x*blockDim.x + threadIdx.x; // nvcc built-ins
    if(i < n)
        y[i] = a*x[i] + y[i];
}</pre>
```

• Each thread has x and y indices.

- We'll just use x for this simple example.
- Note that we are creating one thread per vector element:
 - Exploits GPU hardware support for multithreading.
 - We need to keep in mind that there are a large, but limited number of threads available.

saxpy: host code (part 1 of 5)

```
int main(int argc, char **argv) {
   uint n = atoi(argv[1]);
   float *x, *v, *vv;
   float *dev_x, *dev_y;
   int size = n \times size of (float);
   x = (float *)malloc(size);
   y = (float *)malloc(size);
   yy = (float *)malloc(size);
   for(int i = 0; i < n; i++) {</pre>
      x[i] = i;
      v[i] = i * i;
   . . .
```

- Declare variables for the arrays on the host and device.
- Allocate and initialize values in the host array.

saxpy: host code (part 2 of 5)

```
int main(void) {
    ...
    cudaMalloc((void**)(&dev_x), size);
    cudaMalloc((void**)(&dev_y), size);
    cudaMemcpy(dev_x, x, size, cudaMemcpyHostToDevice);
    cudaMemcpy(dev_y, y, size, cudaMemcpyHostToDevice);
    ...
}
```

- Allocate arrays on the device.
- Copy data from host to device.

saxpy: host code (part 3 of 5)

```
int main(void) {
    ...
    float a = 3.0;
    saxpy<<<ceil(n/256.0),256>>>(n, a, dev_x, dev_y);
    cudaMemcpy(yy, dev_y, size, cudaMemcpyDeviceToHost);
    ...
}
```

- Invoke the code on the GPU:
 - add<<<ceil(n/256.0),256>>>(...) says to create [/256] blocks of threads.
 - Each block consists of 256 threads.
 - See <u>slide 20</u> for an explanation of threads and blocks.
 - The pointers to the arrays (in device memory) and the values of n and a are passed to the threads.
- Copy the result back to the host.

saxpy: host code (part 4 of 5)

Check the results.

saxpy: host code (part 5 of 5)

```
int main(void) {
    ...
    free(x);
    free(y);
    free(yy);
    cudaFree(dev_x);
    cudaFree(dev_y);
    exit(0);
}
```

Clean up.

We're done.

Launching Kernels

Terminology

- Data parallel code that runs on the GPU is called a kernel.
- Invoking a GPU kernel is called launching the kernel.
- How to launch a kernel
 - The host CPUS invokes a __global__ function.
 - The invocation needs to specify how many threads to create.
 - Example:
 - * add<<<ceil(n/256.0),256>>>(...)
 - ***** creates $\left[\frac{n}{256}\right]$ blocks
 - with 256 threads each.

Threads and Blocks

- The GPU hardware combines threads into warps
 - Warps are an aspect of the hardware.
 - ► All of the threads of warp execute together this is the SIMD part.
 - The functionality of a program doesn't depend on the warp details.
 - But understanding warps is critical for getting good performance.
- Each warp has a "next instruction" pending execution.
 - If the dependencies for the next instruction are resolved, it can execute for all threads of the warp.
 - The hardware in each streaming multiprocessor dispatches an instruction each clock cycle if a ready instruction is available.
 - The GPU in lin25 supports 32 such warps of 32 threads each in a "thread block."
- What if our application needs more threads?
 - Threads are grouped into "thread blocks".
 - Each thread block has up to 1024 threads (the HW limit).
 - The GPU can swap thread-blocks in and out of main memory
 - This is GPU system software that we don't see as user-level programmers.

Compiling and running

lin25\$ nvcc saxpy.cu -o saxpy lin25\$./saxpy 1000 The results match!

But is it fast?

- For the saxpy example as written here, not really.
 - Execution time dominated by the memory copies.
- But, it shows the main pieces of a CUDA program.
- To get good performance:
 - We need to perform many operations for each value copied between memories.
 - We need to perform many operations in the GPU for each access to global memory.
 - We need enough threads to keep the GPU cores busy.
 - We need to watch out for thread divergence:
 - * If different threads execute different paths on an if-then-else,
 - ★ Then the else-threads stall while the then-threads execute, and vice-versa.
 - And many other constraints.
- GPUs are great if your problem matches the architecture.

Preview

```
March 3: Data Parallel Programming 1
   Reading: Kirk & Hwu, Chapter 4.
 March 7: Data Parallel Programming 2
   Reading: Kirk & Hwu, Chapter 4.
 March 9: The GPU Memory Model 1
   Reading: Kirk & Hwu, Chapter 5.
 March 11: The GPU Memory Model 2
   Reading: Kirk & Hwu, Chapter 5.
 March 14: GPU Performance 1
   Reading: Kirk & Hwu, Chapter 6.
 March 16: GPU Performance 2
   Reading: Kirk & Hwu, Chapter 6.
 March 18: Parallel Sorting
   Reading: TBD.
But of course, we'll adjust this as we go.
```

Review

- What is SIMD parallelism?
- What is the difference between "shared memory" and "global memory" in CUDA programming.
- Think of a modification to the saxpy program and try it.
 - You'll probably find you're missing programming features for many things you'd like to try.
 - What do you need?
 - Stay tuned for upcoming lectures.