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GPUs
I Early geometry engines.
I Adding functionality and programmability.
I GPGPUs

CUDA
I Execution Model
I Memory Model
I A simpel example

Happy Leap Day!
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Before the first GPU

Early 1980’s: bit-blit hardware for simple 2D graphics.
Draw lines, simple curves, and text.
Fill rectangles and triangles.
Color used a “color map” to save memory:

I bit-wise logical operations on color map indices!
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1989: The SGI Geometry Engine

Basic rendering: coordinate transformation.
I Represent a 3D point with a 4-element vector.
I The fourth element is 1, and allows translations.
I Multiply vector by matrix to perform coordinate transformation.

Dedicated hardware is much more efficient that a general purpose
CPU for matrix-vector multiplication.

I For example, a 32× 32 multiplier can be built with 322 = 1024
one-bit multiplier cells.

F A one-bit multiplier cell is about 50 transistors.
F That’s about 50K transistors for a very simple design.

30K is quite feasible using better architectures.
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1989: The SGI Geometry Engine

Basic rendering: coordinate transformation.
Dedicated hardware is much more efficient that a general purpose
CPU for matrix-vector multiplication.

I For example, a 32× 32 multiplier can be built with 322 = 1024
one-bit multiplier cells.

F A one-bit multiplier cell is about 50 transistors.
F That’s about 50K transistors for a very simple design.

30K is quite feasible using better architectures.
I The 80486DX was also born in 1989.

F The 80486DX was 1.2M transistors, 16MHz, 13MIPs.
F That’s equal to 24 dedicated multipliers.
F 16 multiply-and-accumulate units running at 50MHz (easy in the

same 1µ process) produce 1.6GFlops!
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Why is dedicated hardware so much faster?
Consider a multiiplier:
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Building a better multiplier

Simple multiplier takes time O(N2).
Use carry-lookahead adders (compute carries with a scan)

I time is O(N log N)
I but the hardware is more complicated.

Use carry-save adders and one carry-lookahead at the end
I each adder in the multiplier forwards its carriers to the next adder.
I the final adder resolves the carries.
I time is O(N)
I and the hardware is way simpler than a carry-lookahead design

Add pipeline registers between rows
I throughput is one multiply per cycle.
I but the latency is O(N).
I Graphics and many numerical computations are very tolerant of

latency.
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Why is dedicated hardware so much faster?

Example: matrix-vector multiplication
addition and multiplication are “easy”.
it’s the rest of CPU that’s complicated and the usual performance
bottleneck

I memory read and write
I instruction fetch, decode, and scheduling
I pipeline control
I handling exceptions, hazards, and speculation
I etc.

GPU architectures amortize all of this overhead over a lot of
execution units.
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The fundamental challenge of graphics

Human vision isn’t getting any better.
Once you can perform a graphics task at the limits of human
perception (or the limits of consumer budget for monitors), then
there’s no point in doing it any better.
Rapid advances in chip technology meant that coordinate
transformations (the specialty of the SGI Geometry Engine) were
soon as fast as anyone needed.
Graphics processors have evolved to include more functions. For
example,

I Shading
I Texture mapping

This led to a change from hardwired architectures, to
programmable ones.
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The GPGPU

General Purpose Graphics Processing Unit
The volume market is for graphics, and the highest profit is GPUs
for high-end gamers.

I Most of the computation is floating point.
I Latency doesn’t matter.
I Abundant parallelism.

Make the architecture fit the problem:
I SIMD – single instruction, multiple (parallel) data streams.

F Amortize control overhead over a large number of functional units.
F They call it SIMT (. . . , multiple threads) because they allow

conditional execution.
I High-latency operations

F Allows efficient, high-throughput, high-latency floating point units.
F Allows high latency accesses to off-chip memory.

I This means lots of threads per processor.
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The Fermi Architecture

instructions focus on scalar (rather than
vector) operations to match standard scalar
programming languages. Fermi implements
the PTX 2.0 instruction set architecture
(ISA), which targets C, Cþþ, Fortran,
OpenCL, and DirectCompute programs.
Instructions include

" 32-bit and 64-bit integer, addressing,
and floating-point arithmetic;

" load, store, and atomic memory access;
" texture and multidimensional surface

access;

" individual thread flow control with pre-
dicated instructions, branching, func-
tion calls, and indirect function calls
for Cþþ virtual functions; and

" parallel barrier synchronization.

CUDA cores
Each pipelined CUDA core executes a

scalar floating point or integer instruction
per clock for a thread. With 32 cores, the
streaming multiprocessor can execute up to
32 arithmetic thread instructions per clock.
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What does a core look like?
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A RISC Pipeline

RISC pipeline: see Jan. 25 slides (e.g. slide 7)
I Instruction fetch, decode and other control takes much more power

than actually performing ALU and other operations!

SIMD: Single-Instruction, Multiple-Data
What about memory?
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What does a core look like?
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A SIMD Pipeline

RISC pipeline: see Jan. 25 slides (e.g. slide 7)
SIMD: Single-Instruction, Multiple-Data

I Multiple execution pipelines execute the same instructions.
I Each pipeline has its own registers and operates on separate data

values.
I Commonly, pipelines access adjacent memory locations.
I Great for operating on matrices, vectors, and other arrays.

What about memory?
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What does a core look like?

off−chip

MEM

SM0 SM0 SM0

coalesce

MEM MEM

addr data

SWITCH

Global Memory

execution
pipeline

on−chip
memory

memory

Memory Architecture

RISC pipeline: see Jan. 25 slides (e.g. slide 7)
SIMD: Single-Instruction, Multiple-Data
What about memory?

I On-chip “shared memory” switched between cores: see
Jan. 27 slides (e.g. slide 3)

I Off-chip references are “coalesced”: the hardware detects reads
from (or writes to) consecutive locations and combines them into
larger, block transfers.
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More about GPU Cores
Execution pipeline can be very deep – 20-30 stages.

I Many operations are floating point and take multiple cycles.
I A floating point unit that is deeply pipelined is easier to design, can

provide higher throughput, and use less power than a lower latency
design.

No bypasses
I Instructions block until instructions that they depend on have

completed execution.
I GPUs rely on extensive multi-threading to get performance.

Branches use predicated execution:
I Execute the then-branch code, disabling the “else-branch” threads.
I Execute the else-branch code, disabling the “then-branch” threads.
I The order of the two branches is unspecified.

Why?
I All of these choices optimize the hardware for graphics applications.
I To get good performance, the programmer needs to understand

how the GPGPU executes programs.
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Lecture Outline

GPUs
I been there, done that.

CUDA – we are here!
I Execution Model
I Memory Model
I Code Snippets
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Execution Model: Functions

A CUDA program consists of three kinds of functions:
I Host functions:

F callable from code running on the host, but not the GPU.
F run on the host CPU;
F In CUDA C, these look like normal functions.

I Device functions.
F callable from code running on the GPU, but not the host.
F run on the GPU;
F In CUDA C, these are declared with a device qualifier.

I Global functions
F called by code running on the host CPU,
F they execute on the GPU.
F In CUDA C, these are declared with a global qualifier.
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Execution Model: Memory

GPUCPU

caches DDR

memory
host

GDDR GPU, off−chip

"global" memory

Host memory: DRAM and the CPU’s caches
I Accessible to host CPU but not to GPU.

Device memory: GDDR DRAM on the graphics card.
I Accessible by GPU.
I The host can initiate transfers between host memory and device

memroy.
The CUDA library includes functions to:

I Allocate and free device memory.
I Copy blocks between host and device memory.
I BUT host code can’t read or write the device memory directly.
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Structure of a simple CUDA program

A global function to called by the host program to execute on
the GPU.

I There may be one or more device functions as well.
One or more host functions, including main to run on the host
CPU.

I Allocate device memory.
I Copy data from host memory to device memory.
I “Launch” the device kernel by calling the global function.
I Copy the result from device memory to host memory.

Well do a the saxpy example from the paper.
I saxpy = “Scalar a time x plus y”.
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saxpy: device code

global void saxpy(uint n, float a, float *x, float *y) {
uint i = blockIdx.x*blockDim.x + threadIdx.x; // nvcc built-ins
if(i < n)

y[i] = a*x[i] + y[i];
}

Each thread has x and y indices.
I We’ll just use x for this simple example.

Note that we are creating one thread per vector element:
I Exploits GPU hardware support for multithreading.
I We need to keep in mind that there are a large, but limited number

of threads available.
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saxpy: host code (part 1 of 5)

int main(int argc, char **argv) {
uint n = atoi(argv[1]);
float *x, *y, *yy;
float *dev x, *dev y;
int size = n*sizeof(float);
x = (float *)malloc(size);
y = (float *)malloc(size);
yy = (float *)malloc(size);
for(int i = 0; i < n; i++) {

x[i] = i;
y[i] = i*i;

}
...

}

Declare variables for the arrays on the host and device.
Allocate and initialize values in the host array.
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saxpy: host code (part 2 of 5)

int main(void) {
...
cudaMalloc((void**)(&dev x), size);
cudaMalloc((void**)(&dev y), size);
cudaMemcpy(dev x, x, size, cudaMemcpyHostToDevice);
cudaMemcpy(dev y, y, size, cudaMemcpyHostToDevice);
...

}

Allocate arrays on the device.
Copy data from host to device.
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saxpy: host code (part 3 of 5)

int main(void) {
...
float a = 3.0;
saxpy<<<ceil(n/256.0),256>>>(n, a, dev x, dev y);
cudaMemcpy(yy, dev y, size, cudaMemcpyDeviceToHost);
...

}

Invoke the code on the GPU:
I add<<<ceil(n/256.0),256>>>(...) says to create d/256e

blocks of threads.
I Each block consists of 256 threads.
I See slide 22 for an explanation of threads and blocks.
I The pointers to the arrays (in device memory) and the values of n

and a are passed to the threads.

Copy the result back to the host.

Mark Greenstreet Introduction to GPGPUs and CUDA CS 418 – Feb. 29, 2016 19 / 25

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_29
https://en.wikipedia.org/wiki/2016


saxpy: host code (part 4 of 5)

...
for(int i = 0; i < n; i++) { // check the result

if(yy[i] != a*x[i] + y[i]) {
fprintf(stderr, "ERROR: i=%d, a[i]=%f, b[i]=%f, c[i]=%f\n",

i, a[i], b[i], c[i]);
exit(-1);

}
}
printf("The results match!\n");
...

}

Check the results.
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saxpy: host code (part 5 of 5)

int main(void) {
...
free(x);
free(y);
free(yy);
cudaFree(dev x);
cudaFree(dev y);
exit(0);

}

Clean up.
We’re done.
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Threads and blocks

Our example created
⌈

n
256

⌉
blocks with 256 threads each.

The GPU hardware has a pool of running threads.
I Each thread has a “next instruction” pending execution.
I If the dependencies for the next instruction are resolved, the “next

instruction” can execute.
I The hardware in each streaming multiprocessor dispatches an

instruction each clock cycle if a ready instruction is available.
I The GPU in lin25 supports 1024 such threads.

What if our application needs more threads?
I Threads are grouped into “thread blocks”.
I Each thread block has up to 1024 threads (the HW limit).
I The GPU can swap thread-block in and out of main memory

F This is GPU system software that we don’t see as user-level
programmers.
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But is it fast?

For this example, not really.
I Execution time dominated by the memory copies.

But, it shows the main pieces of a CUDA program.
To get good performance:

I We need to perform many operations for each value copied
between memories.

I We need to perform many operations in the GPU for each access to
global memory.

I We need enough threads to keep the GPU cores busy.
I We need to watch out for thread divergence:

F If different threads execute different paths on an if-then-else,
F Then the else-threads stall while the then-threads execute, and

vice-versa.
I And many other constraints.

GPUs are great if your problem matches the architecture.
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Preview
March 1: Simple CUDA Programming

Reading: Kirk & Hwu, Chapter 3.
March 3: Data Parallel Programming 1

Reading: Kirk & Hwu, Chapter 4.
March 7: Data Parallel Programming 2

Reading: Kirk & Hwu, Chapter 4.
March 9: The GPU Memory Model 1

Reading: Kirk & Hwu, Chapter 5.
March 11: The GPU Memory Model 2

Reading: Kirk & Hwu, Chapter 5.
March 14: GPU Performance 1

Reading: Kirk & Hwu, Chapter 6.
March 16: GPU Performance 2

Reading: Kirk & Hwu, Chapter 6.
March 18: Parallel Sorting

Reading: TBD.

But of course, we’ll adjust

this as we go.
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Review

What is SIMD parallelism?
How does a CUDA GPU handle branches?
How does a CUDA GPU handle pipeline hazards?
What is the difference between “shared memory” and “global
memory” in CUDA programming.
Think of a modification to the saxpy program and try it.

I You’ll probably find you’re missing programming features for many
things you’d like to try.

I What do you need?
I Stay tuned for upcoming lectures.
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