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@ GPUs
» Early geometry engines.
» Adding functionality and programmability.
» GPGPUs

e CUDA

» Execution Model
» Memory Model
» A simpel example

@ Happy Leap Day!
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Before the first GPU

Early 1980’s: bit-blit hardware for simple 2D graphics.
@ Draw lines, simple curves, and text.

@ Fill rectangles and triangles.
@ Color used a “color map” to save memory:
» bit-wise logical operations on color map indices!
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1989: The SGI Geometry Engine

@ Basic rendering: coordinate transformation.
» Represent a 3D point with a 4-element vector.
» The fourth element is 1, and allows translations.
» Multiply vector by matrix to perform coordinate transformation.
@ Dedicated hardware is much more efficient that a general purpose
CPU for matrix-vector multiplication.
» For example, a 32 x 32 multiplier can be built with 322 = 1024
one-bit multiplier cells.
* A one-bit multiplier cell is about 50 transistors.
* That’s about 50K transistors for a very simple design.
30K is quite feasible using better architectures.
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1989: The SGI Geometry Engine

@ Basic rendering: coordinate transformation.

@ Dedicated hardware is much more efficient that a general purpose
CPU for matrix-vector multiplication.
» For example, a 32 x 32 multiplier can be built with 322 = 1024
one-bit multiplier cells.
* A one-bit multiplier cell is about 50 transistors.
* That’s about 50K transistors for a very simple design.
30K is quite feasible using better architectures.
» The 80486DX was also born in 1989.
* The 80486DX was 1.2M transistors, 16MHz, 13MIPs.
* That’s equal to 24 dedicated multipliers.
* 16 multiply-and-accumulate units running at 50MHz (easy in the
same 1u process) produce 1.6GFlops!
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Why is dedicated hardware so much faster?
Consider a multiiplier:
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Building a better multiplier

@ Simple multiplier takes time O(N?).

@ Use carry-lookahead adders (compute carries with a scan)
» timeis O(Nlog N)
» but the hardware is more complicated.

@ Use carry-save adders and one carry-lookahead at the end

» each adder in the multiplier forwards its carriers to the next adder.

» the final adder resolves the carries.

» time is O(N)

» and the hardware is way simpler than a carry-lookahead design
@ Add pipeline registers between rows

» throughput is one multiply per cycle.
» but the latency is O(N).

» Graphics and many numerical computations are very tolerant of
latency.
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Why is dedicated hardware so much faster?

Example: matrix-vector multiplication

@ addition and multiplication are “easy”.
@ it's the rest of CPU that’s complicated and the usual performance
bottleneck

» memory read and write

» instruction fetch, decode, and scheduling

» pipeline control

» handling exceptions, hazards, and speculation
> efc.

@ GPU architectures amortize all of this overhead over a lot of
execution units.
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The fundamental challenge of graphics

Human vision isn’t getting any better.

@ Once you can perform a graphics task at the limits of human
perception (or the limits of consumer budget for monitors), then
there’s no point in doing it any better.

@ Rapid advances in chip technology meant that coordinate
transformations (the specialty of the SGI Geometry Engine) were
soon as fast as anyone needed.

@ Graphics processors have evolved to include more functions. For
example,

» Shading
» Texture mapping

@ This led to a change from hardwired architectures, to

programmable ones.
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The GPGPU

General Purpose Graphics Processing Unit
@ The volume market is for graphics, and the highest profit is GPUs
for high-end gamers.

» Most of the computation is floating point.
» Latency doesn’t matter.
» Abundant parallelism.

@ Make the architecture fit the problem:
» SIMD - single instruction, multiple (parallel) data streams.

* Amortize control overhead over a large number of functional units.
* They call it SIMT (..., multiple threads) because they allow
conditional execution.

» High-latency operations

* Allows efficient, high-throughput, high-latency floating point units.
* Allows high latency accesses to off-chip memory.

» This means lots of threads per processor.
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The Fermi Architecture

‘ Warp scheduler Warp scheduler ‘

/|
‘ Dispatch unit ‘ ‘ Dispatch unit ‘

Dispatch port

Operand collector -

(._ : " Interconnect network

FP = Floating point
INT = Integer arithmetic logic
LD/ST = Load/store

SFU = Special function unit

Mark Greenstreet



http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_29
https://en.wikipedia.org/wiki/2016

What does a core look like?
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A RISC Pipeline

@ RISC pipeline: see Jan. 25 slides (e.g. slide 7)

» Instruction fetch, decode and other control takes much more power
than actually performing ALU and other operations!

@ SIMD: Single-Instruction, Multiple-Data
@ What about memory?
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What does a core look like?
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A SIMD Pipeline

@ RISC pipeline: see Jan. 25 slides (e.g. slide 7)

@ SIMD: Single-Instruction, Multiple-Data
» Multiple execution pipelines execute the same instructions.
» Each pipeline has its own registers and operates on separate data

values.

» Commonly, pipelines access adjacent memory locations.
» Great for operating on matrices, vectors, and other arrays.

@ What about memory?
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What does a core look like?
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Memory Architecture

@ RISC pipeline: see Jan. 25 slides (e.g. slide 7)
@ SIMD: Single-Instruction, Multiple-Data
@ What about memory?
» On-chip “shared memory” switched between cores: see
Jan. 27 slides (e.g. slide 3)
» Off-chip references are “coalesced”: the hardware detects reads
from (or writes to) consecutive locations and combines them into
larger, block transfers.
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More about GPU Cores

@ Execution pipeline can be very deep — 20-30 stages.
» Many operations are floating point and take multiple cycles.
» A floating point unit that is deeply pipelined is easier to design, can
provide higher throughput, and use less power than a lower latency
design.

@ No bypasses

» Instructions block until instructions that they depend on have
completed execution.
» GPUs rely on extensive multi-threading to get performance.

@ Branches use predicated execution:

» Execute the then-branch code, disabling the “else-branch” threads.
» Execute the else-branch code, disabling the “then-branch” threads.
» The order of the two branches is unspecified.

@ Why?
» All of these choices optimize the hardware for graphics applications.

» To get good performance, the programmer needs to understand
how the GPGPU executes programs.
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Lecture Outline

@ GPUs
» been there, done that.
@ CUDA — we are here!

» Execution Model
» Memory Model
» Code Snippets
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Execution Model: Functions

@ A CUDA program consists of three kinds of functions:
» Host functions:
* callable from code running on the host, but not the GPU.
* run on the host CPU;
* |In CUDA C, these look like normal functions.

» Device functions.

* callable from code running on the GPU, but not the host.

* run on the GPU;

* In CUDA C, these are declared with a __device__ qualifier.
» Global functions

* called by code running on the host CPU,

* they execute on the GPU.

* In CUDA C, these are declared with a __global__ qualifier.
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Execution Model: Memory

CPU GPU
host
memory
|caches| [DDR| |GDDR| GPU. off—chip
i "global" memory

@ Host memory: DRAM and the CPU’s caches
» Accessible to host CPU but not to GPU.
@ Device memory: GDDR DRAM on the graphics card.
» Accessible by GPU.
» The host can initiate transfers between host memory and device
memroy.
@ The CUDA library includes functions to:

» Allocate and free device memory.
» Copy blocks between host and device memory.
» BUT host code can’t read or write the device memory directly.
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Structure of a simple CUDA program

@ A __global__function to called by the host program to execute on
the GPU.

» There may be one or more __device__functions as well.

@ One or more host functions, including main to run on the host
CPU.

» Allocate device memory.

» Copy data from host memory to device memory.

» “Launch” the device kernel by calling the __global__function.
» Copy the result from device memory to host memory.

@ Well do a the saxpy example from the paper.
» saxpy = “Scalar a time x plus v”.
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saxpy. device code

__global_void saxpy(uint n, float a, float =*x, float xy) {
uint i1 = blockIdx.x*blockDim.x + threadIdx.x; // nvcc built-ins
if (i < n)

y[i] = a»x[i] + yI[i];

@ Each thread has x and vy indices.
» We'll just use x for this simple example.
@ Note that we are creating one thread per vector element:

» Exploits GPU hardware support for multithreading.
» We need to keep in mind that there are a large, but limited number
of threads available.
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saxpy: host code (part 1 of 5)

int main(int argc, char *xargv) {
uint n = atoi(argvi[l]);
float *x, =*y, *yy;
float xdev._x, =xdev.y;

int size = nxsizeof (float);
x = (float *)malloc(size);
y = (float x)malloc(size);
vy (float *)malloc (size);

i=0; i< mn; i++) {
= i;

for

—

(int
x[1
yli] = ixi;

@ Declare variables for the arrays on the host and device.
@ Allocate and initialize values in the host array.
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saxpy: host code (part 2 of 5)

int main (void) {

cudaMalloc
cudaMalloc
cudaMemcpy
cudaMemcpy

(void*«) (&dev_x), size);
(voidxx) (&dev.y), size);
dev-x, x, size, cudaMemcpyHostToDevice);
dev.y, y, size, cudaMemcpyHostToDevice);

@ Allocate arrays on the device.
@ Copy data from host to device.
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saxpy: host code (part 3 of 5)

int main (void) {

float a = 3.0;
saxpy<<<ceil(n/256.0),256>>>(n, a, dev_x, dev.y);
cudaMemcpy (yy, dev.y, size, cudaMemcpyDeviceToHost);

@ Invoke the code on the GPU:
» add<<<ceil (n/256.0),256>>>(...) says to create [/256]
blocks of threads.
» Each block consists of 256 threads.
» See slide 22 for an explanation of threads and blocks.
» The pointers to the arrays (in device memory) and the values of n
and a are passed to the threads.

@ Copy the result back to the host.
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saxpy: host code (part 4 of 5)

for(int i = 0; i < n; i++) { // check the result
if(yy[i] != a*x[i] + yI[i]) {
fprintf (stderr, "ERROR: i=%d, al[il=%f, b[i]=%f, c[i]=%f\r
i, al[i]l, b[i], clil);
exit (-1);
}

}

printf ("The results match!\n");

@ Check the results.
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saxpy: host code (part 5 of 5)

int main(void) {
free (x);
free(y);
free(yy);
cudaFree (dev-x) ;

cudaFree (dev.y) ;
exit (0);

@ Clean up.
@ We're done.
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Threads and blocks

@ Our example created | 525 | blocks with 256 threads each.

@ The GPU hardware has a pool of running threads.
» Each thread has a “next instruction” pending execution.
» If the dependencies for the next instruction are resolved, the “next
instruction” can execute.
» The hardware in each streaming multiprocessor dispatches an
instruction each clock cycle if a ready instruction is available.
» The GPU in 1in25 supports 1024 such threads.

@ What if our application needs more threads?

» Threads are grouped into “thread blocks”.
» Each thread block has up to 1024 threads (the HW limit).
» The GPU can swap thread-block in and out of main memory

* This is GPU system software that we don'’t see as user-level
programmers.
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But is it fast?

@ For this example, not really.
» Execution time dominated by the memory copies.
@ But, it shows the main pieces of a CUDA program.
@ To get good performance:
» We need to perform many operations for each value copied
between memories.
» We need to perform many operations in the GPU for each access to
global memory.

» We need enough threads to keep the GPU cores busy.
» We need to watch out for thread divergence:

* If different threads execute different paths on an if-then-else,
* Then the else-threads stall while the then-threads execute, and
vice-versa.

» And many other constraints.
@ GPUs are great if your problem matches the architecture.
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Preview
March 1: Simple CUDA Programming
Reading: Kirk & Hwu, Chapter 3.
March 3: Data Parallel Programming 1
Reading: Kirk & Hwu, Chapter 4.
March 7: Data Parallel Programming 2
Reading: Kirk & Hwu, Chapter 4.
March 9: The GPU Memory Model 1
Reading: Kirk & Hwu, Chapter 5.
March 11: The GPU Memory Model 2
Reading: Kirk & Hwu, Chapter 5.
March 14: GPU Performance 1
Reading: Kirk & Hwu, Chapter 6.
March 16: GPU Performance 2
Reading: Kirk & Hwu, Chapter 6.
March 18: Parallel Sorting
Reading: TBD.
this as we go.
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But of course, we’ll adjust
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Review

@ What is SIMD parallelism?

@ How does a CUDA GPU handle branches?

@ How does a CUDA GPU handle pipeline hazards?

@ What is the difference between “shared memory” and “global
memory” in CUDA programming.

@ Think of a modification to the saxpy program and try it.

» You'll probably find you’re missing programming features for many
things you'd like to try.

» What do you need?

» Stay tuned for upcoming lectures.
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