
Performance Wrap-Up

Mark Greenstreet

CpSc 418 – Feb. 24, 2016

Outline:
Finishing performance loss: non-parallelizable code, etc.
Real code
Modeling parallel performance

Mark Greenstreet Performance Wrap-Up CS 418 – Feb. 24, 2016 1 / 12

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_24
https://en.wikipedia.org/wiki/2016
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_24
https://en.wikipedia.org/wiki/2016


Objectives

Learn about main causes of performance loss:
I Overhead: covered in Feb. 22 lecture.
I Non-parallelizable code
I Idle processors
I Resource contention

See this with real-code
I See some pthreads code.
I Compare Erlang and C performance.
I Learn about some more performance measuring tools.

Models
I Wrap-up details from Feb. 12 lecture.
I Why we like λ.
I When our simplified CTA model is not enough:

F location, location, location

Mark Greenstreet Performance Wrap-Up CS 418 – Feb. 24, 2016 2 / 12

http://www.ugrad.cs.ubc.ca/~cs418/2015-2/lecture/02-22/slides.pdf
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_24
https://en.wikipedia.org/wiki/2016


Non-parallelizable Code

Finding the length of a linked list:
int length=0;
for(List p = listHead; p != null; p = p->next)

length++;

I Must dereference each p->next before it can dereference the next
one.

I Could make more parallel by using a different data structure to
represent lists (some kind of skiplist, or tree, etc.)

Searching a binary tree
I Requires 2k processes to get factor of k speed-up.
I Not practical in most cases.
I Again, could consider using another data structure.

Interpretting a sequential program.
Finite state machines.

Mark Greenstreet Performance Wrap-Up CS 418 – Feb. 24, 2016 3 / 12

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_24
https://en.wikipedia.org/wiki/2016


Idle Processors

There is work to do, but processors are idle.
Start-up and completion costs.
Work imbalance.
Communication delays.

Mark Greenstreet Performance Wrap-Up CS 418 – Feb. 24, 2016 4 / 12

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_24
https://en.wikipedia.org/wiki/2016


Resource Contention

.
Processors waiting for a limited resource.
It’s easy to change a compute-bound task into an I/O bound one
by using parallel programming.
Or, we run-into memory bandwidth limitations:

I Processing cache-misses.
I Communication between CPUs and co-processors.

Network bandwidth.

Mark Greenstreet Performance Wrap-Up CS 418 – Feb. 24, 2016 5 / 12

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_24
https://en.wikipedia.org/wiki/2016


Some Real Code

Count 3’s in C (sequential)
I The code
I Timing
I Compare with Erlang

Count 3’s in C (parallel)
I pthreads
I The four versions sketched in Principles of Parallel Programming

Mark Greenstreet Performance Wrap-Up CS 418 – Feb. 24, 2016 6 / 12

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_24
https://en.wikipedia.org/wiki/2016


Modeling Performance

PRAM: ignores communication cost – i.e. it ignores what really
matters.
bloP (a.k.a. logP)

I simplified version of CTA
I ignores location and network topology
I has enough parameters that it worked for small number of

machines and a small number of examples in 1993.

CTA
I We use a simplified version where λ indicates communication cost.

F Roughly logP with fewer parameters.
F Easier to work with, less susceptible to overfitting.

I The full version includes the network (as a graph).

Mark Greenstreet Performance Wrap-Up CS 418 – Feb. 24, 2016 7 / 12

http://dl.acm.org/citation.cfm?id=155333
http://www.annualreviews.org/doi/pdf/10.1146/annurev.cs.01.060186.001445
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_24
https://en.wikipedia.org/wiki/2016


Why topology matters

Not all communication costs are equal:
I Communication between cores on the same chip is relatively fast.
I Communication between cores on different chips on the same

circuit board is slower.
I Communication over a network is much slower.

Example: 2D-neighbours vs. all-to-all communication.
I Assume mesh topology.
I What happens if every processor sends N/4 words to each of its

neighbours?
I What happens if every processor sends N/P words to each of the

other processors a large, parallel supercomputer?

Mark Greenstreet Performance Wrap-Up CS 418 – Feb. 24, 2016 8 / 12

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_24
https://en.wikipedia.org/wiki/2016


What about big messages?

Mark Greenstreet Performance Wrap-Up CS 418 – Feb. 24, 2016 9 / 12

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_24
https://en.wikipedia.org/wiki/2016


Lecture Summary

Performance Loss
I Non-parallelizable code
I Idle processors
I Resource contention

Real-Code: count3s with pthreads
I pthreads code is much more verbose than Erlang.
I But, it runs ∼ 4× faster.
I Demonstrated common parallel pitfalls: races, synchronization

overhead, false sharing.
Modeling:

I CTA with a term for message length is a nice (adequate) model to
get reasonable intuition.

I Be aware of locality issues, especially for large machines.

Mark Greenstreet Performance Wrap-Up CS 418 – Feb. 24, 2016 10 / 12

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_24
https://en.wikipedia.org/wiki/2016


Review Questions

Describe non-parallelizable code and give an example?
Describe how idle processors and synchronization lead to
performance loss?
Which is faster, Erlang or C? By about how much?
Which is easier for writing parallel code, Erlang or C, why?

I Is your answer objective of subjective?
I Any other observations?

Compare the PRAM, logP, and CTA models.

Mark Greenstreet Performance Wrap-Up CS 418 – Feb. 24, 2016 11 / 12

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_24
https://en.wikipedia.org/wiki/2016


Preview

For Feb. 29, read: “The GPU Computing Era”,
http://dx.doi.org/10.1109/MM.2010.41.

Mark Greenstreet Performance Wrap-Up CS 418 – Feb. 24, 2016 12 / 12

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5446251
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_24
https://en.wikipedia.org/wiki/2016

