Performance-Loss

Mark Greenstreet

CpSc 418 — Feb. 22, 2016

Ouitline:
@ Measuring Performance
@ Count 3’s performance

Mark Greenstreet Performance-Loss CS 418 — Feb. 22, 2016 1/22

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_22
https://en.wikipedia.org/wiki/2016
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_22
https://en.wikipedia.org/wiki/2016

Objectives

@ Learn about main causes of performance loss:

Overhead
Non-parallelizable code
Idle processors
Resource contention

\4

v vyy

@ See how these arise in message-passing, and shared-memory
code.

@ As a bonus: see a bit of pthreads programming.

Mark Greenstreet Performance-Loss CS 418 — Feb. 22, 2016 2/22

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_22
https://en.wikipedia.org/wiki/2016

Causes of Performance Loss

@ |deally, we would like a parallel program to run P times faster than
the sequential version when run on P processors.
@ In practice, this rarely happens because of:
» Overhead: work that the parallel program has to do that isn’t
needed in the sequential program.
» Non-parallelizable code: something that has to be done
sequentially.
» |dle processors: There’s work to do, but some processor are
waiting for something before they can work on it.
» Resource contention: Too many processors overloading a limited
resource.

Mark Greenstreet Performance-Loss CS 418 — Feb. 22, 2016 3/22

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_22
https://en.wikipedia.org/wiki/2016

Overhead

Overhead: work that the parallel program has to do that isn’t needed in
the sequential program.
@ Communication:
» The processes (or threads) of a parallel program need to
communicate.
» A sequential program has no interprocess communication.
@ Synchronization.

» The processes (or threads) of a parallel program need to
coordinate.

» This can be to avoid interference, or to ensure that a result is ready
before it's used, etc.

» Sequential programs have a completely specified order of
execution: no synchronization needed.

@ Computation.
» Recomputing a result is often cheaper than sending it.
@ Memory Overhead.
» Each process may have its own copy of a data structure.

Mark Greenstreet Performance-Loss CS 418 — Feb. 22, 2016 4/22

slide:over.communication
slide:over.synchronization
slide:over.compute
slide:over.memory
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_22
https://en.wikipedia.org/wiki/2016

Communication Overhead

leaf: i mid: root:
create list of N/P elements | wait for readies: i wait for readies
send 'ready’ to parent | send ready to parent | start timer
wait for 'go’ wait for go: send gos
count 3s in the list | send gos to children ! wait for totals
send total to parent 1 wait for tallies i compute grand total
| send total to parent | end timer

1 report results

@ In a parallel program, data must be sent between processors.

@ This isn’t a part of the sequential program.

@ The time to send and receive data is overhead.

@ Communication overhead occurs with both shared-memory and
message passing machines and programs.

@ Example: Reduce (e.g. Count 3s):

» Communication between processes adds time to execution.
» The sequential program doesn’t have this overhead.

Mark Greenstreet Performance-Loss CS 418 — Feb. 22, 2016 5/22

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_22
https://en.wikipedia.org/wiki/2016

Communication with shared-memory

@ In a shared memory architecture:

» Each core has it's own cache.

» The caches communicate to make sure that all references from
different cores to the same address look like there is one, common
memory.

» |t takes longer to access data from a remote cache than from the
local cache. This creates overhead.

@ False sharing can create communication overhead even when
there is no logical sharing of data.

» This occurs if two processors repeatedly modify different locations
on the same cache line.

Mark Greenstreet Performance-Loss CS 418 — Feb. 22, 2016 6/22

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_22
https://en.wikipedia.org/wiki/2016

Communication overhead: example

@ The Principles of Parallel Programming book considered an
example of Count 3s (in C, with threads), where there was a
global array, int count [P] where P is the number of threads.

» Each thread (e.g. thread i) initially sets its count, count [1] to 0.
» Each time a thread encounters a 3, it increments its element in the
array.

@ The parallel version ran much slower than the sequential one.

» Cache lines are much bigger than a single int. Thus, many entries
for the count array are on the same cache line.

» A processor has to get exclusive access to update the count for its
thread.

» This invalidates the copies held by the other processors.

» This produces lots of cache misses and a slow execution.

@ A better solution:

» Each thread has a local variable for its count.
» Each thread counts its threes using this local variable and copies its
final total to the entry in the global array.

Mark Greenstreet Performance-Loss CS 418 — Feb. 22, 2016 7122

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_22
https://en.wikipedia.org/wiki/2016

Communication overhead with message passing

@ The time to transmit the message through the network.

@ There is also a CPU overhead: the time set up the transmission
and the time to receive the message.

@ The context switches between the parallel application and the
operating system adds even more time.

@ Note that many of these overheads can be reduced if the sender
and receiver are different threads of the same process running on
the same CPU.

» This has led to SMP implementations of Erlang, MPI, and other
message passing parallel programming frameworks.

» The overheads for message passing on an SMP can be very close
to those of a program that explicitly uses shared memory.

» This allows the programmer to have one parallel programming
model for both threads on a multi-core processor and for multiple
processes on different machines in a cluster.

Mark Greenstreet Performance-Loss CS 418 — Feb. 22, 2016 8/22

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_22
https://en.wikipedia.org/wiki/2016

Communication overhead: an example

It's hard to measure the communication overhead for Count 3s in
Erlang.

@ Each process sends and receives 2—6 messages.
@ The thread scheduler avoids parallel execution!

» It assumes that if you have multiple threads, they are GUI event
handlers or similar, and that you probably aren’t really trying to
make your code parallel.

» It waits until multiple threads have been runable for up to a few
milliseconds before using multiple cores.

» I'm pretty sure this scheduling policy is part of linux/OSX/Windows.

» | should write the pthreads code to measure this.

@ For count 3s, we just see the scheduler overhead, not the
communication time.

Mark Greenstreet Performance-Loss CS 418 — Feb. 22, 2016 9/22

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_22
https://en.wikipedia.org/wiki/2016

Synchronization Overhead

@ Parallel processes must coordinate their operations.
» Example: access to shared data structures.
» Example: writing to a file.

@ For shared-memory programs (e.g. pthreads or Java
threads, there are explicit locks or other synchronization
mechanisms.

@ For message passing (e.g. Erlang or MPI), synchronization is
accomplished by communication.

Mark Greenstreet Performance-Loss CS 418 — Feb. 22, 2016 10/22

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_22
https://en.wikipedia.org/wiki/2016

Computation Overhead

A parallel program may perform computation that is not done by the
sequential program.
@ Redundant computation: it’s faster to recompute the same thing
on each processor than to broadcast.

@ Algorithm: sometimes the fastest parallel algorithm is
fundamentally different than the fastest sequential one, and the
parallel one performs more operations.

Mark Greenstreet Performance-Loss CS 418 — Feb. 22, 2016 11/22

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_22
https://en.wikipedia.org/wiki/2016

Sieve or Eratosthenes

To find all primes < N:

1. Let MightBePrime = [2, 3, ..., N].
2. Let KnownPrimes = [].
3. while (MightBePrime # []) do

Loop invariant: KnownPrimes contains all primes less than the
smallest element of MightBePrime, and MightBePrime
is in ascending order. This ensure that the first element of
MightBePrime is prime.

Let P = firstelement of MightBePrime.

Append P to KnownPrimes.

Delete all multiples of P from MightBePrime.
end

o° o° o o

Sw w w
w N

See http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

Mark Greenstreet Performance-Loss CS 418 — Feb. 22, 2016 12/22

http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_22
https://en.wikipedia.org/wiki/2016

Prime-Sieve in Erlang

% primes (N): return a list of all primes < N.
primes (N) when is_integer (N) and (N < 2) -> [];
primes (N) when is_integer (N) ->

do_primes([], lists:seqg(2, N)).

invariants of do_primes(Known, Maybe):

All elements of Known are prime.

No element of Maybe is divisible by any element of Known.

lists:reverse (Known) ++ Maybe isan ascending list.

Known ++ Maybe contains all primes < N, where N is from p (N) .
do_primes (KnownPrimes, []) -> lists:reverse (KnownPrimes);
do_primes (KnownPrimes, [P | Etc]) ->
do_primes ([P | KnownPrimes],
lists:filter (fun(E) -> (E rem P) /= 0 end, Etc)).

o o° d° o o

Mark Greenstreet Performance-Loss CS 418 — Feb. 22, 2016 13/22

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_22
https://en.wikipedia.org/wiki/2016

A More Efficient Sieve

@ If N is composite, then it has at least one prime factor that is at
most v/N.

@ This means that once we've found a prime that is > v/N, all
remaining elements of Maybe must be prime.

@ Revised code:
% primes (N):return a list of all primes < N.
primes (N) when is_integer (N) and (N < 2) -> [];

primes (N) when is_integer (N) ->
do_primes([], lists:seq(2, N), trunc(math:sqgrt(N))).

do primes (KnownPrimes, [P | Etc], RootN)
when (P =< RootN) ->
do_primes ([P | KnownPrimes],
lists:filter (fun(E) —> (E rem P) /=0end, Etc), RootN);
do_primes (KnownPrimes, Maybe, _RootN) ->
lists:reverse (KnownPrimes, Maybe).

Mark Greenstreet Performance-Loss CS 418 — Feb. 22, 2016 14 /22

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_22
https://en.wikipedia.org/wiki/2016

Prime-Sieve: Parallel Version

@ Main idea

» Find primes from 1...v/N.
» Divide VN + 1... N evenly between processors.
» Have each processor find primes in its interval.

@ We can speed up this program by having each processor compute
the primes from 1...v/N.
» Why does doing extra computation make the code faster?

Mark Greenstreet Performance-Loss CS 418 — Feb. 22, 2016 15/22

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_22
https://en.wikipedia.org/wiki/2016

Memory Overhead

The total memory needed for P processes may be greater than that
needed by one process due to replicated data structures and code.

@ Example: the parallel sieve: each process had its own copy of the
first v/N primes.

Mark Greenstreet Performance-Loss CS 418 — Feb. 22, 2016 16/22

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_22
https://en.wikipedia.org/wiki/2016

Overhead: Summary
Overhead is loss of performance due to extra work that the parallel program
does that is not performed by the segential version. This includes:
@ Communication: parallel processes need to exchange data. A
sequential program only has one process; so it doesn’t have this
overhead.

@ Synchronization: Parallel processes may need to synchronize to
guarantee that some operations (e.g. file writes) are performed in
a particular order. For a sequential program, this ordering is
provided by the program itself.

@ Extra Computation:

» Sometimes it is more efficient to repeat a computation in several
different processes to avoid communication overhead.

» Sometimes the best parallel algorithm is a different algorithm than
the sequential version and the parallel one performs more
operations.

@ Extra Memory: Data structures may be replicated in several
different processes.

Mark Greenstreet Performance-Loss CS 418 — Feb. 22, 2016 17/22

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_22
https://en.wikipedia.org/wiki/2016

Non-parallelizable Code

@ Finding the length of a linked list:
int length=0;
for(List p = listHead; p != null; p = p->next)
length++;

» Must dereference each p—>next before it can dereference the next

one.
» Could make more parallel by using a different data structure to
represent lists (some kind of skiplist, or tree, etc.)

@ Searching a binary tree
» Requires 2 processes to get factor of k speed-up.
» Not practical in most cases.
» Again, could consider using another data structure.

@ Interpretting a sequential program.
@ Finite state machines.

Mark Greenstreet Performance-Loss CS 418 — Feb. 22, 2016 18/22

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_22
https://en.wikipedia.org/wiki/2016

Idle Processors

@ There is work to do, but processors are idle.
@ Start-up and completion costs.

@ Work imbalance.

@ Communication delays.

Mark Greenstreet Performance-Loss CS 418 — Feb. 22, 2016 19/22

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_22
https://en.wikipedia.org/wiki/2016

Resource Contention

@ Processors waiting for a limited resource.

@ It's easy to change a compute-bound task into an I/O bound one
by using parallel programming.

@ Or, we run-into memory bandwidth limitations:

» Processing cache-misses.
» Communication between CPUs and co-processors.

@ Network bandwidth.

Mark Greenstreet Performance-Loss CS 418 — Feb. 22, 2016 20/22

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_22
https://en.wikipedia.org/wiki/2016

Lecture Summary

Causes of Performance Loss in Parallel Programs
@ Overhead
» Communication, slide 5.
» Synchronization, slide 10.
» Computation, slide 11.
» Extra Memory, slide 16.
@ Other sources of performance loss
» Non-parallelizable code, slide 18
» |ldle Processors, slide 19.
» Resource Contention, slide 20.

Mark Greenstreet Performance-Loss CS 418 — Feb. 22, 2016 21/22

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_22
https://en.wikipedia.org/wiki/2016

Review Questions

@ What is overhead? Give several examples of how a parallel
program may need to do more work or use more memory than a
sequential program.

@ Do programs running on a shared-memory computer have
communication overhead? Why or why not?

@ Do message passing program have synchronization overhead?
Why or why not?

@ Why might a parallel program have idle processes even when
there is work to be done?

Mark Greenstreet Performance-Loss CS 418 — Feb. 22, 2016 22/22

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_22
https://en.wikipedia.org/wiki/2016

