
Performance-Loss

Mark Greenstreet

CpSc 418 – Feb. 22, 2016

Outline:
Measuring Performance
Count 3’s performance

Mark Greenstreet Performance-Loss CS 418 – Feb. 22, 2016 1 / 22

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_22
https://en.wikipedia.org/wiki/2016
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_22
https://en.wikipedia.org/wiki/2016


Objectives

Learn about main causes of performance loss:
I Overhead
I Non-parallelizable code
I Idle processors
I Resource contention

See how these arise in message-passing, and shared-memory
code.
As a bonus: see a bit of pthreads programming.

Mark Greenstreet Performance-Loss CS 418 – Feb. 22, 2016 2 / 22

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_22
https://en.wikipedia.org/wiki/2016


Causes of Performance Loss

Ideally, we would like a parallel program to run P times faster than
the sequential version when run on P processors.
In practice, this rarely happens because of:

I Overhead: work that the parallel program has to do that isn’t
needed in the sequential program.

I Non-parallelizable code: something that has to be done
sequentially.

I Idle processors: There’s work to do, but some processor are
waiting for something before they can work on it.

I Resource contention: Too many processors overloading a limited
resource.

Mark Greenstreet Performance-Loss CS 418 – Feb. 22, 2016 3 / 22

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_22
https://en.wikipedia.org/wiki/2016


Overhead
Overhead: work that the parallel program has to do that isn’t needed in
the sequential program.

Communication:
I The processes (or threads) of a parallel program need to

communicate.
I A sequential program has no interprocess communication.

Synchronization.
I The processes (or threads) of a parallel program need to

coordinate.
I This can be to avoid interference, or to ensure that a result is ready

before it’s used, etc.
I Sequential programs have a completely specified order of

execution: no synchronization needed.
Computation.

I Recomputing a result is often cheaper than sending it.
Memory Overhead.

I Each process may have its own copy of a data structure.

Mark Greenstreet Performance-Loss CS 418 – Feb. 22, 2016 4 / 22

slide:over.communication
slide:over.synchronization
slide:over.compute
slide:over.memory
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_22
https://en.wikipedia.org/wiki/2016


Communication Overhead

total

leaf leaf leaf

tallytally tallytally

root

mid mid

leaf:

create list of N/P elements
send ’ready’ to parent
wait for ’go’
count 3s in the list
send total to parent

mid:

wait for tallies

wait for readies:

wait for go:
send gos to children

send ready to parent

send total to parent

root:

send gos

wait for totals

wait for readies
start timer

compute grand total
end timer
report results

total

leaf

In a parallel program, data must be sent between processors.
This isn’t a part of the sequential program.
The time to send and receive data is overhead.
Communication overhead occurs with both shared-memory and
message passing machines and programs.
Example: Reduce (e.g. Count 3s):

I Communication between processes adds time to execution.
I The sequential program doesn’t have this overhead.

Mark Greenstreet Performance-Loss CS 418 – Feb. 22, 2016 5 / 22

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_22
https://en.wikipedia.org/wiki/2016


Communication with shared-memory

In a shared memory architecture:
I Each core has it’s own cache.
I The caches communicate to make sure that all references from

different cores to the same address look like there is one, common
memory.

I It takes longer to access data from a remote cache than from the
local cache. This creates overhead.

False sharing can create communication overhead even when
there is no logical sharing of data.

I This occurs if two processors repeatedly modify different locations
on the same cache line.

Mark Greenstreet Performance-Loss CS 418 – Feb. 22, 2016 6 / 22

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_22
https://en.wikipedia.org/wiki/2016


Communication overhead: example
The Principles of Parallel Programming book considered an
example of Count 3s (in C, with threads), where there was a
global array, int count[P] where P is the number of threads.

I Each thread (e.g. thread i) initially sets its count, count[i] to 0.
I Each time a thread encounters a 3, it increments its element in the

array.
The parallel version ran much slower than the sequential one.

I Cache lines are much bigger than a single int. Thus, many entries
for the count array are on the same cache line.

I A processor has to get exclusive access to update the count for its
thread.

I This invalidates the copies held by the other processors.
I This produces lots of cache misses and a slow execution.

A better solution:
I Each thread has a local variable for its count.
I Each thread counts its threes using this local variable and copies its

final total to the entry in the global array.

Mark Greenstreet Performance-Loss CS 418 – Feb. 22, 2016 7 / 22

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_22
https://en.wikipedia.org/wiki/2016


Communication overhead with message passing

The time to transmit the message through the network.
There is also a CPU overhead: the time set up the transmission
and the time to receive the message.
The context switches between the parallel application and the
operating system adds even more time.
Note that many of these overheads can be reduced if the sender
and receiver are different threads of the same process running on
the same CPU.

I This has led to SMP implementations of Erlang, MPI, and other
message passing parallel programming frameworks.

I The overheads for message passing on an SMP can be very close
to those of a program that explicitly uses shared memory.

I This allows the programmer to have one parallel programming
model for both threads on a multi-core processor and for multiple
processes on different machines in a cluster.

Mark Greenstreet Performance-Loss CS 418 – Feb. 22, 2016 8 / 22

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_22
https://en.wikipedia.org/wiki/2016


Communication overhead: an example

It’s hard to measure the communication overhead for Count 3s in
Erlang.

Each process sends and receives 2–6 messages.
The thread scheduler avoids parallel execution!

I It assumes that if you have multiple threads, they are GUI event
handlers or similar, and that you probably aren’t really trying to
make your code parallel.

I It waits until multiple threads have been runable for up to a few
milliseconds before using multiple cores.

I I’m pretty sure this scheduling policy is part of linux/OSX/Windows.
I I should write the pthreads code to measure this.

For count 3s, we just see the scheduler overhead, not the
communication time.

Mark Greenstreet Performance-Loss CS 418 – Feb. 22, 2016 9 / 22

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_22
https://en.wikipedia.org/wiki/2016


Synchronization Overhead

Parallel processes must coordinate their operations.
I Example: access to shared data structures.
I Example: writing to a file.

For shared-memory programs (e.g. pthreads or Java
threads, there are explicit locks or other synchronization
mechanisms.
For message passing (e.g. Erlang or MPI), synchronization is
accomplished by communication.

Mark Greenstreet Performance-Loss CS 418 – Feb. 22, 2016 10 / 22

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_22
https://en.wikipedia.org/wiki/2016


Computation Overhead

A parallel program may perform computation that is not done by the
sequential program.

Redundant computation: it’s faster to recompute the same thing
on each processor than to broadcast.
Algorithm: sometimes the fastest parallel algorithm is
fundamentally different than the fastest sequential one, and the
parallel one performs more operations.

Mark Greenstreet Performance-Loss CS 418 – Feb. 22, 2016 11 / 22

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_22
https://en.wikipedia.org/wiki/2016


Sieve or Eratosthenes

To find all primes ≤ N:

1. Let MightBePrime = [2, 3, ..., N].
2. Let KnownPrimes = [].
3. while(MightBePrime 6= []) do

% Loop invariant: KnownPrimes contains all primes less than the
% smallest element of MightBePrime, and MightBePrime
% is in ascending order. This ensure that the first element of
% MightBePrime is prime.

3.1. Let P = first element of MightBePrime.
3.2. Append P to KnownPrimes.
3.3. Delete all multiples of P from MightBePrime.
4. end

See http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

Mark Greenstreet Performance-Loss CS 418 – Feb. 22, 2016 12 / 22

http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_22
https://en.wikipedia.org/wiki/2016


Prime-Sieve in Erlang

% primes(N): return a list of all primes ≤ N.
primes(N) when is integer(N) and (N < 2) -> [];
primes(N) when is integer(N) ->

do primes([], lists:seq(2, N)).

% invariants of do primes(Known, Maybe):
% All elements of Known are prime.
% No element of Maybe is divisible by any element of Known.
% lists:reverse(Known) ++ Maybe is an ascending list.
% Known ++ Maybe contains all primes ≤ N, where N is from p(N).
do primes(KnownPrimes, []) -> lists:reverse(KnownPrimes);
do primes(KnownPrimes, [P | Etc]) ->
do primes([P | KnownPrimes],

lists:filter(fun(E) -> (E rem P) /= 0 end, Etc)).

Mark Greenstreet Performance-Loss CS 418 – Feb. 22, 2016 13 / 22

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_22
https://en.wikipedia.org/wiki/2016


A More Efficient Sieve

If N is composite, then it has at least one prime factor that is at
most

√
N.

This means that once we’ve found a prime that is ≥
√

N, all
remaining elements of Maybe must be prime.
Revised code:
% primes(N): return a list of all primes ≤ N.
primes(N) when is integer(N) and (N < 2) -> [];
primes(N) when is integer(N) ->

do primes([], lists:seq(2, N), trunc(math:sqrt(N))).

do primes(KnownPrimes, [P | Etc], RootN)
when (P =< RootN) ->

do primes([P | KnownPrimes],
lists:filter(fun(E) -> (E rem P) /= 0 end, Etc), RootN);

do primes(KnownPrimes, Maybe, RootN) ->
lists:reverse(KnownPrimes, Maybe).

Mark Greenstreet Performance-Loss CS 418 – Feb. 22, 2016 14 / 22

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_22
https://en.wikipedia.org/wiki/2016


Prime-Sieve: Parallel Version

Main idea
I Find primes from 1 . . .

√
N.

I Divide
√

N + 1 . . .N evenly between processors.
I Have each processor find primes in its interval.

We can speed up this program by having each processor compute
the primes from 1 . . .

√
N.

I Why does doing extra computation make the code faster?

Mark Greenstreet Performance-Loss CS 418 – Feb. 22, 2016 15 / 22

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_22
https://en.wikipedia.org/wiki/2016


Memory Overhead

The total memory needed for P processes may be greater than that
needed by one process due to replicated data structures and code.

Example: the parallel sieve: each process had its own copy of the
first
√

N primes.

Mark Greenstreet Performance-Loss CS 418 – Feb. 22, 2016 16 / 22

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_22
https://en.wikipedia.org/wiki/2016


Overhead: Summary
Overhead is loss of performance due to extra work that the parallel program
does that is not performed by the seqential version. This includes:

Communication: parallel processes need to exchange data. A
sequential program only has one process; so it doesn’t have this
overhead.
Synchronization: Parallel processes may need to synchronize to
guarantee that some operations (e.g. file writes) are performed in
a particular order. For a sequential program, this ordering is
provided by the program itself.
Extra Computation:

I Sometimes it is more efficient to repeat a computation in several
different processes to avoid communication overhead.

I Sometimes the best parallel algorithm is a different algorithm than
the sequential version and the parallel one performs more
operations.

Extra Memory: Data structures may be replicated in several
different processes.

Mark Greenstreet Performance-Loss CS 418 – Feb. 22, 2016 17 / 22

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_22
https://en.wikipedia.org/wiki/2016


Non-parallelizable Code

Finding the length of a linked list:
int length=0;
for(List p = listHead; p != null; p = p->next)

length++;

I Must dereference each p->next before it can dereference the next
one.

I Could make more parallel by using a different data structure to
represent lists (some kind of skiplist, or tree, etc.)

Searching a binary tree
I Requires 2k processes to get factor of k speed-up.
I Not practical in most cases.
I Again, could consider using another data structure.

Interpretting a sequential program.
Finite state machines.

Mark Greenstreet Performance-Loss CS 418 – Feb. 22, 2016 18 / 22

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_22
https://en.wikipedia.org/wiki/2016


Idle Processors

There is work to do, but processors are idle.
Start-up and completion costs.
Work imbalance.
Communication delays.

Mark Greenstreet Performance-Loss CS 418 – Feb. 22, 2016 19 / 22

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_22
https://en.wikipedia.org/wiki/2016


Resource Contention

.
Processors waiting for a limited resource.
It’s easy to change a compute-bound task into an I/O bound one
by using parallel programming.
Or, we run-into memory bandwidth limitations:

I Processing cache-misses.
I Communication between CPUs and co-processors.

Network bandwidth.

Mark Greenstreet Performance-Loss CS 418 – Feb. 22, 2016 20 / 22

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_22
https://en.wikipedia.org/wiki/2016


Lecture Summary

Causes of Performance Loss in Parallel Programs
Overhead

I Communication, slide 5.
I Synchronization, slide 10.
I Computation, slide 11.
I Extra Memory, slide 16.

Other sources of performance loss
I Non-parallelizable code, slide 18
I Idle Processors, slide 19.
I Resource Contention, slide 20.

Mark Greenstreet Performance-Loss CS 418 – Feb. 22, 2016 21 / 22

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_22
https://en.wikipedia.org/wiki/2016


Review Questions

What is overhead? Give several examples of how a parallel
program may need to do more work or use more memory than a
sequential program.
Do programs running on a shared-memory computer have
communication overhead? Why or why not?
Do message passing program have synchronization overhead?
Why or why not?
Why might a parallel program have idle processes even when
there is work to be done?

Mark Greenstreet Performance-Loss CS 418 – Feb. 22, 2016 22 / 22

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_22
https://en.wikipedia.org/wiki/2016

