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Objectives

Learn about models of computation
I Sequential: Random Access Machine (RAM)
I Parallel

F Parallel Random Access Machine (PRAM)
F Candidate Type Architecture (CTA)
F Latency-Overhead-Bandwidth-Processors (LogP)

See how they apply to some examples
I find the maximum
I reduce
I FFT
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The RAM Model

RAM = Random Access Machine
Axioms of the model

I Machines work on words of a “reasonable” size.
I A machine can perform a “reasonable” operation on a word as a

single step.
F such operations include addition, subtraction, multiplication, division,

comparisons, bitwise logical operations, bitwise shifts and rotates.
I The machine has an unbounded amount of memory.

F A memory address is a “word” as described above.
F Reading or writing a word of memory can be done in a single step.
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The Relevance of the RAM Model

If a single step of a RAM corresponds (to within a factor close to
1) to a single step of a real machine.
Then algorithms that are efficient on a RAM will also be efficient
on a real machine.
Historically, this assumption has held up pretty well.

I For example, mergesort and quicksort are better than
bubblesort on a RAM and on real machines, and the RAM model
predicts the advantage quite accurately.

I Likewise, for many other algorithms
F graph algorithms, matrix computations, dynamic programming, . . . .
F hard on a RAM generally means hard on a real machine as well: NP

complete problems, undecidable problems, . . . .
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The Irrelevance of the RAM Model
The RAM model is based on assumptions that don’t correspond to
physical reality:

Memory access time is highly non-uniform.
I Architects make heroic efforts to preserve the illusion of uniform

access time fast memory –
F caches, out-of-order execution, prefetching, . . .

I – but the illusion is getting harder and harder to maintain.
F Algorithms that randomly access large data sets run much slower

than more localized algorithms.
F Growing memory size and processor speeds means that more and

more algorithms have performance that is sensitive to the memory
hierarchy.

The RAM model does not account for energy:
I Energy is the critical factor in determining the performance of a

computation.
I The energy to perform an operation drops rapidly with the amount

of time allowed to perform the operation.
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The PRAM Model

PRAM = Parallel Random Access Machine
Axioms of the model

I A computer is composed of multiple processors and a shared
memory.

I The processors are like those from the RAM model.
F The processors operate in lockstep.
F I.e. for each k > 0, all processors perform their k th step at the same

time.
I The memory allows each processor to perform a read or write in a

single step.
F Multiple reads and writes can be performed in the same cycle.
F If each processor accesses a different word, the model is simple.
F If two or more processors try to access the same word on the same

step, then we get a bunch of possible models:
EREW: Exclusive-Read, Exclusive-Write
CREW: Concurrent-Read, Exclusive-Write
CRCW: Concurrent-Read, Concurrent-Write
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EREW, CREW, and CRCW
EREW: Exclusive-Read, Exclusive-Write

I If two processors access the same location on the same step,
F then the machine fails.

CREW: Concurrent-Read, Exclusive-Write
I Multiple machines can read the same location at the same time,

and they all get the same value.
I At most one machine can try to write a particular location on any

given step.
I If one processor writes to a memory location and another tries to

read or write that location on the same step,
F then the machine fails.

CRCW: Concurrent-Read, Concurrent-Write
If two or more machines try to write the same memory word at the same
time, then if they are all writing the same value, that value will be written.
Otherwise (depending on the model),

I the machine fails, or
I one of the writes “wins”, or
I an arbitrary value is written to that address.
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Fun with the PRAM Model

Finding the maximum element of an array of N elements.
The obvious approach

I Do a reduce.
I Use N/2 processors to compute the result in Θ(log2 N) time.

max(x(0)...x(7))

x(1) x(2) x(3) x(4) x(5) x(6) x(7)

max max max max

max max

max

x(0)
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A Valiant Solution

L. Valiant, 1975
Use P processors.
Step 1:

I Divide the N elements into N/3 sets of size 3.
I Assign 3 processors to each set, and perform all three pairwise

comparisons in parallel.
I Mark all the “losers” (requires a CRCW PRAM) and move the max

of each set of three to a fixed location.
Step 2:

I We now have N/3 elements left and still have N processors.
I We can make groups of 7 elements, and have 21 processors per

group, which is enough to perform all
(

7
2

)
= 21 pairwise

comparisons in a single step.
I Thus, in O(1) time we move the max of each set to a fixed location.

We now have N/21 elements left to consider.
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Visualizing Valiant

max(x(0)...x(20))

N values, N processors

groups of 3 values

max from each group

group of 7 values

(21 parallel comparisons)
max from group of 7

(3 parallel comparisons/group)
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A Valiant Solution

Subsequent steps:
I On step k , we have N/mk elements left.
I We can make groups of 2mk + 1 elements, and have

mk (2mk + 1) =

(
2mk + 1

2

)
processors per group, which is

enough to perform all pairwise comparisons in a single step.
I We now have N/(mk (2mk + 1)) elements to consider.

Run-time:
I The sparsity is squared at each step.
I It follows that the algorithm requires O(log log N).
I Valiant showed a matching lower bound and extended the results to

show merging is θ(log log N) and sorting is θ(log N) on a CRCW
PRAM.
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Valiant Details

round values remaining group size processors per group
1 N 2 ∗ 1 + 1 = 3 3 = 3 choose 2
2 N

3 2 ∗ 3 + 1 = 7 3 ∗ 7 = 21 = 7 choose 2
3 1

7
N
3 = N

21 2 ∗ 21 + 1 = 43 21 ∗ 43 = 903 = 43 choose 2
4 1

43
N
21 = N

903 2 ∗ 903 + 1 = 1, 807 903 ∗ 1, 807 = 1, 631, 721 = 1807 choose 2
. . . . . . . . . . . .
k N

mk
2mk + 1 mk (2mk + 1) = (2mk + 1) choose 2

k + 1 1
2mk+1 2mk+1 + 1 mk+1(2mk+1 + 1) = (2mk+1 + 1) choose 2

= N
mk

N
mk (2mk+1)

= N
mk+1

mk is the “sparsity” at round k :
m1 = 1

mk+1 = mk (2mk + 1)

Now note that mk+1 = mk (2mk + 1) > 2m2
k > m2

k .
Thus, log(mk+1) > 2 log(mk ).
For k ≥ 2, mk > 22k−1

.
Therefore, if N ≥ 2, k > log log(N) + 1 ⇒ mk > N.
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The Irrelevance of the PRAM Model

The PRAM model is based on assumptions that don’t correspond to
physical reality:

Connecting N processors with memory requires a switching network.
I Logic gates have bounded fan-in and fan-out.
I ⇒ and switch fabric with N inputs (and/or N outputs) must have

depth of at least log N.
I This gives a lower bound on memory access time of Ω(log N).

Processors exist in physical space
I N processors take up Ω(N) volume.
I The processor has a diameter of Ω(N1/3).
I Signals travel at a speed of at most c (the speed of light).
I This gives a lower bound on memory access time of Ω(N1/3).

Valiant acknowledged that he was neglecting these issues in his original paper.
I but that didn’t deter lots of results being published for the PRAM

model.

Mark Greenstreet Models of Parallel Computation CpSc 418 – Oct. 10, 2013 14 / 33



The CTA Model

CTA = Candidate Type Architecture
Axioms of the model

I A computer is composed of multiple processors.
I Each processor has

F Local memory that can be accessed in a single processor step (like
the RAM model).

F A small number of connections to a communications network.
I A communication mechanism:

F Conveying a value between processors takes λ time steps.
F λ can range from 102 to 105 or more depending on the architecture.
F The exact communication mechanism is not specified.

Mark Greenstreet Models of Parallel Computation CpSc 418 – Oct. 10, 2013 15 / 33



Communication Mechanisms

Shared Memory: λ ≈ 100− 1000.
One-sided communication:

I Used on some supercomputers (e.g. Cray).
I put(addr, data): copies data into the memory of a remote

node.
I read(addr): reads data from the memory of a remote node.
I Called “one-sided” because the remote-node doesn’t do anything to

receive or transmit the data involved.

Message passing: λ ≈ 5000− 10000+.
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Latency vs. Throughput

Definitions:
I Latency is the amount of time it takes to perform an operation from

start to finish.
I Throughput is the number of operations that can be performed per

unit time.
Relations:

I If we did everything sequentially, we would have

Throughput = 1
Latency

I But, with pipelined and/or parallel execution, we can have

Throughput � 1
Latency
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Latency vs. Throughput

Why does it matter:
I Throughput (a.k.a. peak performance) is usually a lousy

measurement of real performance: real programs have some
latency critical operations.

I Latency does not completely capture the performance of a parallel
architecture

F If it take λ time units to send one word between two processors,
F We can probably send two words in < 2λ time units.
F On the other hand, can we send a million words in ≈ λ time units?
F Bandwidth matters.
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The LogP Model

Motivation (1993): convergence of parallel architectures
I Individual nodes have microprocessors and memory of a

workstation or PC.
I A large parallel machine had at most 2000 such nodes.
I Point-to-point interconnect –

F Network bandwidth much lower than memory bandwidth.
F Network latency much higher than memory latency.
F Relatively small network diameter: 5 to 20 “hops” for a 1000 node

machine.

The model parameters:
L the latency of the communication network fabric
o the overhead of a communication action
g the bandwidth of the communication network
P the number of processors
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LogP Example: Broadcast

CTA LogP  (q = max(g−o,0)
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time savings of logP optimal schedule compared with simple tree

o

L

LogP breaks communication into more detailed phases than CTA.
If g is enough smaller than L, then LogP shows that the simple
binary tree isn’t exactly optimal for broadcast.
Example: L = 7, o = 6, g = 8, P = 8 (thus q = 2):

I Simple binary tree completes broadcast in Time = 3L + 6o = 57.
The extension of the logP solution in light-blue represents such a
path.

I Optimized tree completes in 28 time units
F p0 sends to p5, p3, p1, and p1
F Time = 5o + 3q + L = 43.

I Is it worth it?
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Broadcast: notes
The optimized schedule can be derived by starting with the root.
Determine when each processor is eligible to send a message:

I If the processor just sent a message, it must wait max(o,g) = o + q
time units before it can send another message.

I If the processor just receive a message, it has the send-overhead
time of o before it can send a message.

Notes on the figure:
I An “overhead” edge marked with a red o denotes the overhead for

sending a message.
I An “overhead” edge marked with a green o denotes the overhead

for receiving
I The faint edges and vertices are not part of the optimized broadcast

– they indicate the time that a broadcast would take if with the
balanced tree schedule on the left.

Big picture: the logP approache recognizes that the root can finis
sending three messages before a processor that is two ”latency”
edges away is ready to send.

I Thus, the time until the last message is received is reduced if the
root sends one more message,

I and, another node sends one less message.
LogP made sense in 1992, but it ignores:

I topology specific bandwidth constraints of real routing networks;
I heterogeneous message overheads: communication between two

cores on the same CPU is much faster than communication
between two processors separated by a large routing network.
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LogP Example: FFT (1/8)

time frequency

y(m) Y (k) =
1√
N

N−1∑

m=0

e
2πimk

N y(m)

The Fourier transform converts between time and frequency
representations.
Brute-force implementation: O(N2) operations.
FFT: O(N log N) operations.
The Fast-Fourier transform is used in many signal processing
applications:

I audio signals
I wi-fi modulation and demodulation
I image filtering
I voice recognition
I . . .
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LogP Example: FFT (2/8)
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Full-disclosure: spectra computed using a Hamming window.
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LogP Example: FFT (3/8)
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The data flow of the
FFT has the
“butterfly” structure
shown on the left.
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LogP Example: FFT (4/8)
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First attempt to
parallelize:

I assign blocks of
rows to
processors.

I lots of
communication
at the left

I everything local
at the right.
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LogP Example: FFT (5/8)
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Second attempt to
parallelize:

I interleave rows
among
processors

I everything local
on the left

I lots of
communication
on the right.
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LogP Example: FFT (6/8)
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I interleave rows
on the left

I one big round of
communication
in the middle

I block of rows on
the right
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LogP Example: FFT (7/8)
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Another view of
the combined
approach

I the FFT and
transpose
phases
drawn
separately.
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LogP Example: FFT (8/8)

LogP shows that the combined approach is better.
I So does CTA – one round of messages is clearly better than log P

rounds.
I The technique is well-known – the same approach is important to

get good cache utilization.
LogP shows that staggering messages is better than naively
flooding one destination at a time.

I So does CTA with its assumption of bounded fan-in and fan-out of
the network.

Note: The “transpose in the middle” pattern of the FFT occurs in
many other algorithms as well.

I It’s important to be able to handle this pattern efficiently.
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Comparing the models
CTA is simpler than LogP
LogP accounts for more machine details

I but these details don’t seem essential for the examples that they give in the
paper.

I It’s not clear that the extra details would account for more than a factor of 2
in time estimates,

I and there are lots of other system details that LogP ignores that can cause
errors of that magnitude or larger.

I but the marketing is better: “LogP” just sounds better than CTA. ,
Both are based on a 10-20 year old machine model

I That’s ok, the papers are 18-25 years old.
I Doesn’t account for the heterogeniety of today’s parallel computers:

F multi-core on chip, faster communication between processors on the
same board than across boards, etc.

CTA seems like a simple, and reasonable place to start.
I But recognize the limitations of any of these models.

Getting a model of parallel computation that’s as all-purpose as the RAM
is still a work-in-progress.
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For further reading

[Valiant1975] Leslie G. Valiant, “Parallelism in Comparison
Problems,” SIAM Journal of Computing, vol. 4, no. 3, pp. 348–355,
(Sept. 1975).
[Fortune1979] Steven Fortune and James Wyllie, “Parallelism in
Random Access Machines,” Proceeding of the 11th ACM
Symposium on Theory of Computing (STOC’79), pp. 114–118,
May 1978.
[Culler1993] David Culler, Richard Karp, et al., “LogP: towards a
realistic model of parallel computation,” ACM SIGPLAN Notices,
vol. 28, no. 7, pp. 1–12, (July 1993).
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Preview

October 10: Models of Parallel Computation
Reading: Lin & Snyder, chapter 2, pp. 43–59.
Homework: Homework 2 due.

October 15: Peril-L
Reading: Lin & Snyder, chapter 4, pp. 87–100.

October 17: Scan
Reading: Lin & Snyder, chapter 5, pp. 112–125.

October 22: Midterm
October 24: PReach: a parallel model checker, and an

example of a large-scale Erlang application
October 29: Work allocation

Reading: Lin & Snyder, chapter 5, pp. 125–142.

October 31: POSIX threads
Reading: Lin & Snyder, chapter 6, pp. 143–187.

Nov. 5: Sorting
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Review

Compare and Contrast the main features of the PRAM, CTA, and
LogP models?
How does each model represent computation?
How does each model represent communication?
How does one determine parameter values for the CTA and LogP
models? Describe at a high-level the kinds of experiments you
could run to estimate the parameters.
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