Speed-Up

Mark Greenstreet

CpSc 418 – Feb. 3, 2016

Outline:

- Measuring Performance
- Speed-Up
- Amdahl's Law
- The law of modest returns
- Superlinear speed-up
- Embarrassingly parallel problems

Objectives

- Understand key measures of performance
 - Time: latency vs. throughput
 - Time: wall-clock vs. operation count
 - Speed-up: slide 4
- Understand common observations about parallel performance
 - Amdahl's law: limitations on parallel performance (and how to evade them)
 - ► The law of modest returns: high complexity problems are bad, and worse on a parallel machine.
 - Superlinear speed-up: more CPUs ⇒ more, fast memory and sometimes you win.
 - Embarrassingly parallel problems: sometimes you win, without even trying.

Measuring Performance

- The main motivation for parallel programming is performance
 - ► Time: make a program run faster.
 - Space: allow a program to run with more memory.
- To make a program run faster, we need to know how fast it is running.
- There are many possible measures:
 - Latency: time from starting a task until it completes.
 - Throughput: the rate at which tasks are completed.
 - Key observation:

throughput =
$$\frac{1}{latency}$$
, sequential programming throughput $\geq \frac{1}{latency}$, parallel programming

Speed-Up

Simple definition:

• We can also describe speed-up as how many percent faster:

$$\%$$
 faster = $(speed_up - 1) * 100\%$

- But beware of the spin:
 - Is "time" latency or throughput?
 - ► How big is the problem?
 - What is the sequential version:
 - ★ The parallel code run on one processor?
 - ★ The fastest possible sequential implementation?
 - ★ Something else?
- More practically, how do we measure time?

Speed-Up - Example

- Let's say that count 3s of a million items takes 10ms on a single processor.
- If I run count 3s with four processes on a four CPU machine, and it takes 3.2ms, what is the speed-up?
- If I run count 3s with 16 processes on a four CPU machine, and it takes 1.8ms, what is the speed-up?
- If I run count 3s with 128 processes on a 32 CPU machine, and it takes 0.28ms, what is the speed-up?

Time complexity

- What is the time complexity of sorting?
 - What are you counting?
 - Why do you care?
- What is the time complexity of matrix multiplication?
 - What are you counting?
 - Why do you care?

Big-O and Wall-Clock Time

- In our algorithms classes, we count "operations" because we have some belief that they have something to do with how long the actual program will take to execute.
 - ➤ Or maybe not. Some would argue that we count "operations" because it allows us to use nifty techniques from discrete math.
 - ▶ I'll take the position that the discrete math is nifty because it tells us something useful about what our software will do.
- In our architecture classes, we got the formula:

time =
$$\frac{\text{(\#inst. executed)} * (cycles/instruction)}{\text{clock frequency}}$$

- The approach in algorithms class of counting comparisons or multiplications, etc., is based on the idea that everything else is done in proportion to these operations.
- BUT, in parallel programming, we can find that a communication between processes can take 1000 times longer than a comparison or multiplication.
 - This may not matter if you're willing to ignore "constant factors."
 - ▶ In practice, factors of 1000 are too big to ignore.

Amdahl's Law

- Given a sequential program where
 - fraction s of the execution time is inherently sequential.
 - fraction 1 s of the execution time benefits perfectly from speed-up.
- The run-time on *P* processors is:

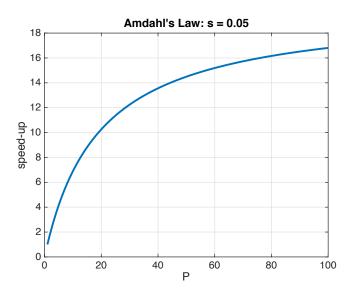
$$T_{parallel} = T_{sequential} * (s + \frac{1-s}{P})$$

- Consequences:
 - Define

$$speed_up = \frac{T_{sequential}}{T_{parallel}}$$

- ▶ Speed-up on *P* processors is at most $\frac{1}{s}$.
- Gene Amdahl argued in 1967 that this limit means that parallel computers are only useful for a few special applications where s is very small.

Amdahl's Law



Amdahl's Law, 49 years later

Amdahl's law is not a physical law.

- Amdahl's law is mathematical theorem:
 - If $T_{parallel}$ is $\left(s + \frac{1-s}{P}\right) T_{sequential}$
 - and $speed_up = T_{sequential}/T_{parallel}$,
 - ▶ then for $0 < s \le 1$, $speed_up \le \frac{1}{s}$.
- Amdahl's law is also an economic law:
 - Amdahl's law was formulated when CPUs were expensive.
 - Today, CPUs are cheap
 - The cost of fabricating eight cores on a die is very little more that the cost of fabricating one.
 - Computer cost is dominated by the rest of the system: memory, disk, network, monitor, . . .
- Amdahl's law assumes a fixed problem size.

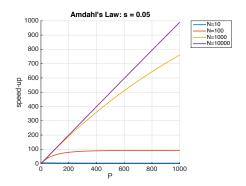
Amdahl's Law, 49 years later

- Amdahl's law is an economic law, not a physical law.
 - Amdahl's law was formulated when CPUs were expensive.
 - ► Today, CPUs are cheap (see previous slide)
- Amdahl's law assumes a fixed problem size
 - Many computations have s (sequential fraction) that decreases as N (problem size) increases.
 - Having lots of cheap CPUs available will
 - Change our ideas of what computations are easy and which are hard.
 - ★ Determine what the "killer-apps" will be in the next ten years.
 - Ten years from now, people will just take it for granted that most new computer applications will be parallel.
 - Examples: see next slide

Amdahl's Law, 49 years later

- Amdahl's law is an economic law, not a physical law.
- Amdahl's law assumes a fixed problem size
 - ► Ten years from now, people will just take it for granted that most new computer applications will be parallel.
 - Examples:
 - ★ Managing/searching/mining massive data sets.
 - ★ Scientific computation.
 - Note that most of the computation for animation and rendering resembles scientific computation. Computer games benefit tremendously from parallelism.
 - Likewise for multimedia computing.

Amdahl's Law, one more try



- We can have problems where the parallel work grows faster than the sequential part.
- Example: parallel work grows as $N^{3/2}$ and the sequential part grows as log P.

The Law of Modest Returns

More bad news. 3

- Let's say we have an algorithm with a sequential run-time $T = (12\text{ns})N^4$.
 - If we're willing to wait for one hour for it to run, what's the largest value of *N* we can use?
 - ► If we have 10000 machines, and perfect speed-up (i.e. speed_up = 1000), now what is the largest value of N we can use?
 - What if the run-time is $(5ns)1.2^N$?
- The law of modest returns
 - Parallelism offers modest returns, unless the problem is of fairly low complexity.
 - Sometimes, modest returns are good enough: weather forecasting, climate models.
 - Sometimes, problems have huge N and low complexity: data mining, graphics, machine learning.

Super-Linear Speed-up

Sometimes, *speed_up* > *P*. ☺

- How does this happen?
 - Impossibility "proof": just simulate the P parallel processors with one processor, time-sharing P ways.
- Memory: a common explanation
 - ▶ P machines have more main memory (DRAM)
 - and more cache memory and registers (total)
 - and more I/O bandwidth, . . .
- Multi-threading: another common explanation
 - The sequential algorithm underutilizes the parallel capabilities of the CPU.
 - A parallel algorithm can make better use.
- Algorithmic advantages: once in a while, you win!
 - Simulation as described above has overhead.
 - If the problem is naturally parallel, the parallel version can be more efficient.
- BUT: be very skeptical of super-linear claims, especially if speed_up >> P.

Embarrassingly Parallel Problems

Problems that can be solved by a large number of processors with very little communication or coordination.

- Rendering images for computer-animation: each frame is independent of all the others.
- Brute-force searches for cryptography.
- Analyzing large collections of images: astronomy surveys, facial recognition.
- Monte-Carlo simulations: same model, run with different random values.

Lecture Summary

Parallel Performance

- Speed-up: slide 4
- Limits
 - Amdahl's Law, slide 10.
 - Modest gains, slide 14.
- Sometimes, we win
 - ► Super-linear speedup, slide 15.
 - Embarrassingly Parallel Problems, slide ??.

Preview

February 3: Parallel Performance: Speed-up	
Reading:	Pacheco, Chapter 2, Section 2.6.
Homework:	Homework 2 – hard deadline
February 5: Parallel Performance: Overheads	
February 10: Midterm	
February 12: Something Fun	
February 22: Pa	arallel performance: Models
February 24: Pa	arallel Matrix Multiplication
Reading:	Lin & Snyder, Chapter 5, pp. 125–133.
February 26: Introduction to GPUs	
Reading:	Nichols & Dally, "The GPU Computing Era"
	IEEE Micro, March-April, 2010

Review Questions

- What is speed-up? Give an intuitive, English answer and a mathematical formula.
- What is Amdahl's law? Give a mathematical formula. Why is Amdahl's law a concern when developing parallel applications? Why in many cases is it not a show-stopper?
- Is parallelism an effective solution to problems with high big-O complexity? Why or why not?
- What is super-linear speed-up? Describe two causes.
- What is an embarrassingly parallel problem. Give an example.