Speed-Up
Mark Greenstreet

CpSc 418 — Feb. 3, 2016

Outline:
@ Measuring Performance
@ Speed-Up
@ Amdahl’s Law
@ The law of modest returns
@ Superlinear speed-up
@ Embarrassingly parallel problems

Mark Greenstreet Speed-Up CS 418 — Feb. 3, 2016 1/19

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_3
https://en.wikipedia.org/wiki/2016
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_3
https://en.wikipedia.org/wiki/2016

Objectives

@ Understand key measures of performance
» Time: latency vs. throughput
» Time: wall-clock vs. operation count
» Speed-up: slide 4
@ Understand common observations about parallel performance
» Amdahl’s law: limitations on parallel performance (and how to
evade them)
» The law of modest returns: high complexity problems are bad, and
worse on a parallel machine.
» Superlinear speed-up: more CPUs = more, fast memory — and
sometimes you win.
» Embarrassingly parallel problems: sometimes you win, without
even trying.

Mark Greenstreet Speed-Up CS 418 — Feb. 3, 2016 2/19

slide:measure
slide:time
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_3
https://en.wikipedia.org/wiki/2016

Measuring Performance

@ The main motivation for parallel programming is performance
» Time: make a program run faster.
» Space: allow a program to run with more memory.

@ To make a program run faster, we need to know how fast it is
running.

@ There are many possible measures:

» Latency: time from starting a task until it completes.

» Throughput: the rate at which tasks are completed.
» Key observation:

1
latency

throughput

, sequential programming

throughput

atency’ parallel programming

Mark Greenstreet Speed-Up CS 418 — Feb. 3, 2016 3/19

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_3
https://en.wikipedia.org/wiki/2016

Speed-Up
@ Simple definition:

time(sequential__execution)

speed _up =

time(parallel_execution)

@ We can also describe speed-up as how many percent faster:
%faster = (speed_up—1)x100%

@ But beware of the spin:

» |s “time” latency or throughput?

» How big is the problem?

» What is the sequential version:
* The parallel code run on one processor?
* The fastest possible sequential implementation?
* Something else?

@ More practically, how do we measure time?

Mark Greenstreet Speed-Up CS 418 — Feb. 3, 2016 4/19

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_3
https://en.wikipedia.org/wiki/2016

Speed-Up — Example

@ Let’s say that count 3s of a million items takes 10ms on a single
processor.

@ If I run count 3s with four processes on a four CPU machine, and it
takes 3.2ms, what is the speed-up?

@ If I run count 3s with 16 processes on a four CPU machine, and it
takes 1.8ms, what is the speed-up?

@ If I run count 3s with 128 processes on a 32 CPU machine, and it
takes 0.28ms, what is the speed-up?

Mark Greenstreet Speed-Up CS 418 — Feb. 3, 2016 5/19

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_3
https://en.wikipedia.org/wiki/2016

Time complexity

@ What is the time complexity of sorting?

» What are you counting?
» Why do you care?

@ What is the time complexity of matrix multiplication?

» What are you counting?
» Why do you care?

Mark Greenstreet Speed-Up CS 418 — Feb. 3, 2016 6/19

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_3
https://en.wikipedia.org/wiki/2016

Big-O and Wall-Clock Time

@ In our algorithms classes, we count “operations” because we have some
belief that they have something to do with how long the actual program
will take to execute.

» Or maybe not. Some would argue that we count “operations”
because it allows us to use nifty techniques from discrete math.

» [I'll take the position that the discrete math is nifty because it tells us
something useful about what our software will do.

@ In our architecture classes, we got the formula:

inst. ted 1 instructi
time (#inst. executed) * (cycles/instruction)

clock frequency

@ The approach in algorithms class of counting comparisons or
multiplications, etc., is based on the idea that everything else is done in
proportion to these operations.

@ BUT, in parallel programming, we can find that a communication
between processes can take 1000 times longer than a comparison or
multiplication.

» This may not matter if you're willing to ignore “constant factors.”
» In practice, factors of 1000 are too big to ignore.

Mark Greenstreet Speed-Up CS 418 — Feb. 3, 2016 7/19

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_3
https://en.wikipedia.org/wiki/2016

Amdahl’s Law

@ Given a sequential program where

» fraction s of the execution time is inherently sequential.
» fraction 1 — s of the execution time benefits perfectly from speed-up.

@ The run-time on P processors is:

1—s
Toaratlel = Tsequential * (S + P)

@ Consequences:
» Define
speed up = Tsequential
- Tparallel
» Speed-up on P processors is at most 15
» Gene Amdahl argued in 1967 that this limit means that parallel
computers are only useful for a few special applications where s is
very small.

Mark Greenstreet Speed-Up CS 418 — Feb. 3, 2016 8/19

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_3
https://en.wikipedia.org/wiki/2016

Amdahl’s Law

18 Amdahl's Law: s = 0.05

0 20 40 60 80 100

Mark Greenstreet Speed-Up

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_3
https://en.wikipedia.org/wiki/2016

Amdahl’s Law, 49 years later

Amdahl’s law is not a physical law.
@ Amdahl’s law is mathematical theorem:
> If Tparatier 1S (S + 1%5) Tsequential
» and speedﬁup = Tsequential/ 7-pezralllels
» thenfor0 < s <1, speed up < 1.
@ Amdahl’s law is also an economic law:

» Amdahl’s law was formulated when CPUs were expensive.
» Today, CPUs are cheap
* The cost of fabricating eight cores on a die is very little more that the
cost of fabricating one.
* Computer cost is dominated by the rest of the system: memory, disk,
network, monitor, . ..

@ Amdahl’s law assumes a fixed problem size.

Mark Greenstreet Speed-Up CS 418 — Feb. 3, 2016 10/19

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_3
https://en.wikipedia.org/wiki/2016

Amdahl’s Law, 49 years later

@ Amdahl’s law is an economic law, not a physical law.

» Amdahl’s law was formulated when CPUs were expensive.
» Today, CPUs are cheap (see previous slide)

@ Amdahl’s law assumes a fixed problem size

» Many computations have s (sequential fraction) that decreases as
N (problem size) increases.
» Having lots of cheap CPUs available will
* Change our ideas of what computations are easy and which are hard.
* Determine what the “killer-apps” will be in the next ten years.
e Ten years from now, people will just take it for granted that
most new computer applications will be parallel.
» Examples: see next slide

Mark Greenstreet Speed-Up CS 418 — Feb. 3, 2016 11/19

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_3
https://en.wikipedia.org/wiki/2016

Amdahl’s Law, 49 years later

@ Amdahl’s law is an economic law, not a physical law.
@ Amdahl’s law assumes a fixed problem size

» Ten years from now, people will just take it for granted that most
new computer applications will be parallel.
» Examples:
* Managing/searching/mining massive data sets.
* Scientific computation.
e Note that most of the computation for animation and render-
ing resembles scientific computation. Computer games ben-

efit tremendously from parallelism.
e Likewise for multimedia computing.

Mark Greenstreet Speed-Up CS 418 — Feb. 3, 2016 12/19

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_3
https://en.wikipedia.org/wiki/2016

Amdahl’s Law, one more try

Amdahl's Law: s = 0.05
1000

——N=10
——N=100
900 N=1000

——N=10000
800

700
600
500

speed-up

400
300
200

100

0 200 400 600 800 1000

@ We can have problems where the parallel work grows faster than
the sequential part.

@ Example: parallel work grows as N°3/2 and the sequential part
grows as log P.

Mark Greenstreet Speed-Up CS 418 — Feb. 3, 2016 13/19

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_3
https://en.wikipedia.org/wiki/2016

The Law of Modest Returns

More bad news. ®
@ Let’s say we have an algorithm with a sequential run-time
T = (12ns)N*.
» If we're willing to wait for one hour for it to run, what’s the largest
value of N we can use?
» If we have 10000 machines, and perfect speed-up (i.e.
speed__up = 1000), now what is the largest value of N we can use?
» What if the run-time is (5ns)1.2V?

@ The law of modest returns
» Parallelism offers modest returns, unless the problem is of fairly low
complexity.
» Sometimes, modest returns are good enough: weather forecasting,
climate models.
» Sometimes, problems have huge N and low complexity: data
mining, graphics, machine learning.

Mark Greenstreet Speed-Up CS 418 — Feb. 3, 2016 14/19

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_3
https://en.wikipedia.org/wiki/2016

Super-Linear Speed-up
Sometimes, speed_up > P. ©
@ How does this happen?
» Impossibility “proof”: just simulate the P parallel processors with
one processor, time-sharing P ways.
@ Memory: a common explanation
» P machines have more main memory (DRAM)
» and more cache memory and registers (total)
» and more I/O bandwidth, ...
@ Multi-threading: another common explanation

» The sequential algorithm underutilizes the parallel capabilities of
the CPU.
» A parallel algorithm can make better use.
@ Algorithmic advantages: once in a while, you win!
» Simulation as described above has overhead.
» If the problem is naturally parallel, the parallel version can be more
efficient.
@ BUT: be very skeptical of super-linear claims, especially if
speed_up > P.

Mark Greenstreet Speed-Up CS 418 — Feb. 3, 2016 15/19

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_3
https://en.wikipedia.org/wiki/2016

Embarrassingly Parallel Problems

Problems that can be solved by a large number of processors with very
little communication or coordination.

@ Rendering images for computer-animation: each frame is
independent of all the others.

@ Brute-force searches for cryptography.

@ Analyzing large collections of images: astronomy surveys, facial
recognition.

@ Monte-Carlo simulations: same model, run with different random
values.

Mark Greenstreet Speed-Up CS 418 — Feb. 3, 2016 16/19

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_3
https://en.wikipedia.org/wiki/2016

Lecture Summary

Parallel Performance
@ Speed-up: slide 4
@ Limits
» Amdahl’s Law, slide 10.
» Modest gains, slide 14.
@ Sometimes, we win

» Super-linear speedup, slide 15.
» Embarrassingly Parallel Problems, slide ??.

Mark Greenstreet Speed-Up CS 418 — Feb. 3, 2016 17/19

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_3
https://en.wikipedia.org/wiki/2016

Preview

February 3: Parallel Performance: Speed-up
Reading: Pacheco, Chapter 2, Section 2.6.
Homework: Homework 2 — hard deadline

February 5: Parallel Performance: Overheads

February 10: Midterm

February 12: Something Fun

February 22: Parallel performance: Models

February 24: Parallel Matrix Multiplication
Reading: Lin & Snyder, Chapter 5, pp. 125-133.

February 26: Introduction to GPUs
Reading: Nichols & Dally, “The GPU Computing Era”

IEEE Micro, March-April, 2010

Mark Greenstreet Speed-Up CS 418 — Feb. 3, 2016 18/19

http://dx.doi.org/10.1109/MM.2010.41
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_3
https://en.wikipedia.org/wiki/2016

Review Questions

@ What is speed-up? Give an intuitive, English answer and a
mathematical formula.

@ What is Amdahl’s law? Give a mathematical formula. Why is
Amdahl’s law a concern when developing parallel applications?
Why in many cases is it not a show-stopper?

@ Is parallelism an effective solution to problems with high big-O
complexity? Why or why not?

@ What is super-linear speed-up? Describe two causes.

@ What is an embarrassingly parallel problem. Give an example.

Mark Greenstreet Speed-Up CS 418 — Feb. 3, 2016 19/19

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_3
https://en.wikipedia.org/wiki/2016

