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Objectives

Familiar with typical network topologies:
I rings, meshes, crossbars, tori, hypercubes, trees, fat-trees.
I why some topologies become “all wires”.

Implications for programming
I bandwidth bottlenecks
I latency considerations
I location matters
I heterogeneous computes.
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Message Passing Computers

NIC NIC NIC

CPUCPU CPU...

network switch

Multiple CPU’s
Communication through a network:

I Commodity networks for small clusters.
I Special high-performance networks for super-computers

Programming model:
I Explicit message passing between processes (like Erlang)
I No shared memory or variables.
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Some simple message-passing clusters

25 linux workstations (e.g. lin01 . . . lin25.ugrad.cs.ubc.ca) and
standard network routers.

I A good platform for learning to use a message-passing cluster.
I But, we’ll figure out that network bandwidth and latency are key

bottlenecks.
A “blade” based cluster, for example:

I 16 “blades” each with 4 6-core CPU chips, and 32G of DRAM.
I An “infiniband” or similar router for about 10-100 times the

bandwidth of typical ethernet.
I The price tag is ∼$300K.

F Great if you need the compute power.
F But, we won’t be using one in this class.
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The Tianhe 2 Machine
The world’s fastest (Linpack) super-computer (as of June 17,
2013)
16,000 nodes each with

I Two Intel Xeon E5-2692 processors (12 cores per processor)
I Three Intel Xeon Phi 31S1P processors (57 cores per processor)

F Each processor has 61 cores.
F 57 are exposed to the programmer, the other 4 are disabled.
F This allows the chip to work with less than perfect fabrication.

Total of 3,120,000 cores
LINPACK performance: 33 PFlops
Power consumption 18MW (computer) + 24MW (cooling) =
42MW.

I Roughly 42,000 homes.
I At 0.05/KWH, that’s $18M/year, just for the power bill.

Interconnect: Fat-tree
Programming model: A version linux with MPI tuned for this
machine.
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The Westgrid Clusters

Clusters at various Western Canadian Universities (including
UBC).
Up to 9600 cores.
Available for research use.
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Network Topologies

Network topologies are to the message-passing community what
cache-coherence protocols are to the shared-memory people:

I Lots of papers have been published.
I Machine designers are always looking for better networks.
I Network topology has a strong impact on performance, the

programming model, and the cost of building the machine.
A message-passing machine may have multiple networks:

I A general purpose network for sending messages between
machines.

I Dedicated networks for reduce, scan, and synchronization:
F The reduce and scan networks can include ALUs (integer and/or

floating point) to perform common operations such as sums, max,
product, all, any, etc. in the networking hardware.

F A synchronization network only needs to carry a few bits and can be
designed to minimize latency.
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Ring-Networks
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Advantages: simple.
Disadvantages:

I Worst-case latency grows as O(P) where P is the number of
processors.

I Easily congested – limited bandwidth.
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Star Networks
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Advantages:
I Low-latency – single hop between any two nodes
I High-bandwidth – no contention for connections with different

sources and destinations.
Disadvantages:

I Amount of routing hardware grows as O(P2).
I Requires lots of wires, to and from switch –

Imagine trying to build a switch that connects to 1000 nodes!
Summary

I Surprisingly practical for 10-50 ports.
I Hierarchies of cross-bars are often used for larger networks.
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A crossbar switch
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Meshes
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Advantages:
I Easy to implement: chips and circuit boards are effectively

two-dimensional.
I Cross-section bandwidth grow with number of processors –

more specifically, bandwidth grows as
√

P.
Disadvantages:

I Worst-case latency grows as
√

P.
I Edges of mesh are “special cases.”
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Tori

Advantages:
I Has the good features of a mesh, and
I No special cases at the edges.

Disadvantages:
I Worst-case latency grows as

√
P.
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Hypercubes

A 0−dimensional (1 node), radix−2 hypercube
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Hypercubes

A 1−dimensional (2 node), radix−2 hypercube
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Hypercubes

A 2−dimensional (4 node), radix−2 hypercube
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Hypercubes

A 3−dimensional (8 node), radix−2 hypercube
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Hypercubes

A 4−dimensional (16 node), radix−2 hypercube
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Hypercubes

A 5−dimensional (32 node), radix−2 hypercube
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Hypercubes
A 5−dimensional (32 node), radix−2 hypercube

Advantages
I Small diameter (log N)
I Lots of bandwidth
I Easy to partition.
I Simple model for algorithm design.

Disadvantages
I Needs to be squeezed into a three-dimensional universe.
I Lots of long wires to connect nodes.
I Design of a node depends on the size of the machine.
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Dimension Routing

% Send a message, msg, from node src to node dst
for i = 1:d % d is dimension of the hypercube
if(bit(i, src) != bit(i, dst)) % if different for dimension i
send(msg, link[i]); % then send msg to our i-neighbour
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Trees

Nodes

Processors

Router

Simple network: number of routing nodes = number of processors
− 1.
Wiring: O(log N) extra height (O(N log N)) extra area.

I Wiring: O(
√

N log N) extra area for H-tree.

Low-latency: O(log N) + wire delay.
Low-bandwidth: bottleneck at root.
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Fat-Trees

Nodes

Processors

Router

Use Mα parallel links to connect subtrees with M leaves.
0 ≤ α ≤ 1

I α = 0: simple tree
I α = 1: strange crossbar

Fat-trees are “universal”
I For 2

3 < α < 1 a fat-tree interconnect with volume V can simulate
any interconnect that occupies the same volume with a time
overhead that is poly-log factor of N.
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Performance Considerations
Bandwidth

I How many bytes per-second can we send between two
processors?

F May depend on which two processors: neighbours may have faster
links than spanning the whole machine.

I Bisection bandwidth: find the worst way to divide the processors
into to sets of P/2 processors each.

F How many bytes per-second can we send between the two
partitions?

F If we divide this by the number of processors, we typically get a much
smaller value that the peak between two processors.

Latency
I How long does it take to send a message from one processor to

another?
F Typically matters the most for short messages.
F Round-trip time is often a good way to measure latency.

Cost
I How expensive is the interconnect – it may dominate the total

machine cost.
F Cost of the network interface hardware.
F Cost of the cables.
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Real-life networks

InfiniBand is becoming increasingly prevalent
Peak bandwidths ≥ 6GBytes/sec.

I achieved bandwidths of 2–3GB/s.
Support for RDMA and “one-sided” communication

I CPU A can read or write a block of memory residing with CPU B.

Often, networks include trees for synchronization (e.g. barriers),
and common reduce and scan operations.
The MPI (message-passing interface) evolves to track the
capabilities of the hardware.
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Real-life message passing machines

3D Tori: Titan (Oakridge National Labs, USA)
I Fits nicely in our 3D world.

Trees and fat-trees: Tianhe-2 (China)
I Someone had to.
I They seem to be upgrading to their own, custom-topology network.

5 and 6D tori: K-machine (Japan), Sequoia (Lawrence Livermore
Labs, USA).

I How to fit a 6D torus in a 3D universe:
I Make small 3D tori that fit in a single hardware rack (e.g. 4x3x3 =

36 nodes).
I Make a large, 3D torus, where each node is one of the small, 3D

tori.
I Connections in the large, 3D torus are “ribbon fiber” or similar (e.g.

20-100 fiber-optic links in a single cable).
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What this means for programmers

Location matters.
I The meaning of location depends on the machine.
I Getting a good programming model is hard.
I Challenges of heterogeneous machines.

What it means for different kinds of computers
I Supercomputers
I Clouds
I PCs of the future(?)
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Our favorite problems

Reduce: an obvious fit for a tree.
I Works well on fat-tree or hypercube – the tree is a subnetwork.
I Easily adapted to mesh or torus

Matrix-multiply
I Tree: the root is a bottleneck
I Mesh or torus: there are good algorithms – I’m looking for a simple

one.
I Fat-tree: works well for sufficiently large α (α > 1

2 ?)
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Summary
Message passing machines have an architecture that
corresponds to the message-passing programming paradigm.
Message passing machines can range from

I Clusters of PC’s with a commodity switch.
I Clouds: lots of computers with a general purpose network.
I Super-computers: lots of compute nodes tightly connected with

high-performance interconnect.
Many network topologies have been proposed:

I Easy to have the machine become “all wire”.
I Performance and cost are often dominated by network bandwidth

and latency.
I Peta-flops or other instruction counting measures are an indirect

measure of performance.
Implications for programmers

I Location matters
I Communication costs of algorithms is very important
I Heterogeneous computing is likely in your future.
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Preview

February 1: Distributed-Memory Machines
Reading: Pacheco, Chapter 2, Sections 2.4 and 2.5.
Mini-assignment: Mini 3 goes out (I hope)
Homework: Homework 2 – early bird deadline

February 3: Parallel Performance: Speed-up
Reading: Pacheco, Chapter 2, Section 2.6.
Homework: Homework 2 – hard deadline

February 5: Parallel Performance: Overheads
February 10: Midterm
February 12: Something Fun
February 22: Parallel performance: Models
February 24: Parallel Matrix Multiplication

Reading: Lin & Snyder, Chapter 5, pp. 125–133.
February 26: Introduction to GPUs

Reading: Nichols & Dally, “The GPU Computing Era”
IEEE Micro, March-April, 2010
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Review

Consider a machine with 4096 processors.
What is the maximum latency for sending a message between two
processors (measured in network hops) if the network is

I A ring?
I A crossbar?
I A 2-D mesh?
I A 3-D mesh?
I A hypercube?
I A binary tree?
I A radix-4 tree?

Why are crossbars and hypercubes only used for machines with a
“small” number of processors?
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Supplementary Material

Message-passing origami: how to fold a mesh into a torus.
How big is a hypercube: it’s all about the wires.
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From a mesh to a torus (1/2)
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Fold left-to-right, and make connections where the left and right
edges meet.
Now, we’ve got a cylinder.
Note that there are no “long” horizontal wires: the longest wires
jump across one processor.

Mark Greenstreet Message Passing Computers CS 418 – Feb. 1, 2016 26 / 24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_1
https://en.wikipedia.org/wiki/2016


From a mesh to a torus (2/2)
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Fold top-to-bottom, and make connections where the top and
bottom edges meet.
Now, we’ve got a torus.
Again there are no “long” wires.
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How big is a hypercube?

Consider a hypercube with N = 2d nodes.
Assume each link can transfer one message in each direction in
one time unit. The analysis here easily generalizes for links of
higher or lower bandwidths.
Let each node send a message to each of the other nodes.
Using dimension routing,

I Each node will send N/2 messages for each of the d dimensions.
I This takes time N/2.
I As soon as one batch of messages finishes the dimension-0 route,

that batch can continue with the dimension-1 route, and the next
batch can start the dimension 0 route.

I So, we can route with a throughput of
(

N
2

)
messages per N/2

time.
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How big is a hypercube?

Consider a hypercube with N = 2d nodes.
Assume each link can transfer one message in each direction in
one time unit. The analysis here easily generalizes for links of
higher or lower bandwidths.
Let each node send a message to each of the other nodes.
Using dimension routing,

we can route with a throughput of
(

N
2

)
messages per N/2 time.

Consider any plane such that N/2 nodes are on each side of the
plane.

I 1
2

(
N
2

)
messages must cross this plane in N/2 time.

I This means that at least N − 1 links must cross the plane.
I The plane has area O(N).
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How big is a hypercube?

Consider a hypercube with N = 2d nodes.
Assume each link can transfer one message in each direction in
one time unit. The analysis here easily generalizes for links of
higher or lower bandwidths.
Let each node send a message to each of the other nodes.
Using dimension routing,

we can route with a throughput of
(

N
2

)
messages per N/2 time.

Consider any plane such that N/2 nodes are on each side of the
plane.

I The plane has area O(N).

Because the argument applies for any plane, we conclude that the
hypercube has diameter O(

√
N) and thus volume O(N

3
2 ).

Asymptotically, the hypercube is all wire.
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