
Shared Memory Multiprocessors

Mark Greenstreet

CpSc 418 – Jan. 27, 2016

Outline:
Shared-Memory Architectures
Memory Consistency
Examples

Mark Greenstreet Shared Memory Multiprocessors CS 418 – Jan. 27, 2016 1 / 17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_27
https://en.wikipedia.org/wiki/2016
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_27
https://en.wikipedia.org/wiki/2016


Objectives

Understand how processors can communicate by sharing
memory.
Able to explain the term “sequential consistency”

I Describe a simple cache-coherence protocol, MESI
I Describe how the protocol can be implemented by snooping.
I Be aware that real machines make guarantees that are weaker

than sequential consistency.

Mark Greenstreet Shared Memory Multiprocessors CS 418 – Jan. 27, 2016 2 / 17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_27
https://en.wikipedia.org/wiki/2016


An Ancient Shared-Memory Machine

SWITCH

MEM1

CPU1CPU0

MEM0 MEM2 MEM3

Multiple CPU’s (typically two) shared a memory
If both attempted a memory read or write at the same time

I One is chosen to go first.
I Then the other does its operation.
I That’s the role of the switch in the figure.

By using multiple memory units (partitioned by address), and a
switching network, the memory could keep up with the processors.
But, now that processors are 100’s of times faster than memory,
this isn’t practical.
Mark Greenstreet Shared Memory Multiprocessors CS 418 – Jan. 27, 2016 3 / 17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_27
https://en.wikipedia.org/wiki/2016


A Shared-Memory Machine with Caches

CPU

MEM

cache 0

CPU 0

cache 1

CPU 1 ...

...

n−1

cache

n−1

Caches reduce the number of main memory reads and writes.
But, what happens when a processor does a write?
Mark Greenstreet Shared Memory Multiprocessors CS 418 – Jan. 27, 2016 4 / 17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_27
https://en.wikipedia.org/wiki/2016


The MESI protocol

write*,

E

I

S

M

remote

write*
local

local read

remote
ε

write*,

local
write

remote
read

remote read
update

memory

ε

εremote write*,
update memory

I
= shared
= invalid

S
E = exclusive

= modifiedM

write*
(to memory)

= write−through

write
(local−cache only)

= write−back

ε = "spontaneous"
transition

(carefully)

Caches can share read-only copies of a cache block.
When a processor writes a cache block, the first write goes to
main memory.

I The other caches are notified and invalidate their copies.
I This ensures that writeable blocks are exclusive.

Mark Greenstreet Shared Memory Multiprocessors CS 418 – Jan. 27, 2016 5 / 17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_27
https://en.wikipedia.org/wiki/2016


A typical cache

way3

=
47:12

tag

data

hit

way0 way1 way2

= = =

tagaddr[0:47]

position
within

cache−block
(ignored)

3:0

cache
index

tag datadata tag datatag data
11:4

Only the read-path is shown. Writing is similar.
This is a 16K-byte, 4-way set-associative cache, with 16 byte
cache blocks.

Mark Greenstreet Shared Memory Multiprocessors CS 418 – Jan. 27, 2016 6 / 17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_27
https://en.wikipedia.org/wiki/2016


How the cache works

Read:
I The address is divided into three pieces: block-offset, cache-index,

and tag.
I The index is used to look up one entry in each “way”.
I The tags from each way are compared with the tag of the address:

F If any tag matches, that way provides the data.
F If no tags match, then a cache miss occurs.
F Some current block is evicted from the cache to make room for the

incoming block.
I The block-offset determines which bytes from the cache block are

returned to the CPU.

Writes are similar to reads.

Mark Greenstreet Shared Memory Multiprocessors CS 418 – Jan. 27, 2016 7 / 17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_27
https://en.wikipedia.org/wiki/2016


Snooping caches (part 1 of 2)

CPUsengine

MESI

CPU

tags
snoop

local
tags

data

miss

match

shared bus

...
Memory
and other

Each cache has two copies of the tags.
One copy is used for operations by the local processor.
The other copy is used to monitor operations on the main memory
bus.

I if another processor attempts to read a block which we have in the
exclusive or modified state, we provide the data (and update
main memory).

I if another processor attempts to write a block that we have, we
invalidate our block (updating main memory first if our copy was in
the modified state.

Mark Greenstreet Shared Memory Multiprocessors CS 418 – Jan. 27, 2016 8 / 17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_27
https://en.wikipedia.org/wiki/2016


Snooping caches (part 2 of 2)

CPUsengine

MESI

CPU

tags
snoop

local
tags

data

miss

match

shared bus

...
Memory
and other

Pros and cons:
Fairly easy to implement.
Doesn’t scale to large numbers of processors.

I All cache misses processed on the same bus.
I Engineering marvels push this with multi-level caches and multiple

buses, but it get very expensive, and still doesn’t scale to 1000s of
processors.

Mark Greenstreet Shared Memory Multiprocessors CS 418 – Jan. 27, 2016 9 / 17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_27
https://en.wikipedia.org/wiki/2016


Directory schemes

Main memory keeps a copy of the data and
I a bit-vector that records which processors have copies, and
I a bit to indicate that one processor has a copy and it may be

modified.
A processor accesses main memory as required by the MESI
protocol.

I The memory unit sends messages to the other CPUs to direct them
to take actions as needed by the protocol.

I The ordering of these messages ensures that memory stays
consistent.

Mark Greenstreet Shared Memory Multiprocessors CS 418 – Jan. 27, 2016 10 / 17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_27
https://en.wikipedia.org/wiki/2016


Sequential Consistency

Memory is said to be sequentially consistent if
All memory reads and writes from all processors can be arranged
into a single, sequential order, such that:

I The operations for each processor occur in the global ordering in
the same order as they did on the processor.

I Every read gets the value of the preceding write to the same
address.

Sequential consistency corresponds to what programmers think
“ought” to happen.

I Very similar to “serialiazability” for database transactions.

Mark Greenstreet Shared Memory Multiprocessors CS 418 – Jan. 27, 2016 11 / 17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_27
https://en.wikipedia.org/wiki/2016


MESI Guarantees Sequential Consistency

First we prove that at most one processor can have the cache
block for any particular address in the E or M state.
Define:

value(addr)
= cachei(addr).data, if ∃i . cachei(addr).state ∈ {E,M}
= MEM(addr), otherwise

We can show that every read(addr) gets the value value(addr),
and that
We can show value(addr) gives the value from the most recent
write to addr .
Proof: consider each transition in the protocol. Show that if a
cache line is in state S, E, or M, the value of that line is the correct
one.

Mark Greenstreet Shared Memory Multiprocessors CS 418 – Jan. 27, 2016 12 / 17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_27
https://en.wikipedia.org/wiki/2016


Weak Consistency

interface

CPU

mem

read

queue

cache

mem

write

queue

memory

A CPU may have multiple cache-misses and protocol
operations in-flight at the same time.
Typically, reads can move ahead of writes to maximize
program performance.
Why?

I Because there may be instructions waiting for the data
from a load.

I A transition from “shared” to “modified” requires
notifying all processors – this can take a long time.

I Memory writes don’t happen until the instruction
commits.

This means that real computers don’t guarantee
sequential consistency.
But they still make some promises.

I Look up “Total Store Order” if you want to learn more.

Mark Greenstreet Shared Memory Multiprocessors CS 418 – Jan. 27, 2016 13 / 17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_27
https://en.wikipedia.org/wiki/2016


Programming Shared Memory Machines
We’ll do a bit with Java threads at the end of the term.
Shared memory make parallel programming “easier” because:

I One thread can pass an entire data structure to another thread just
by giving a pointer.

I No need to pack-up trees, graphs, or other data structures as
messages and unpack them at the receiving end.

Shared memory make parallel programming harder because:
I It’s easy to overlook synchronization (control to shared data

structures). Then, we get data races, corrupted data structures,
and other hard-to-track-down bugs.

I A defensive reaction is to wrap every shared reference with a lock.
But locks are slow (that λ factor for communication), and this often
results is slow code, or even deadlock.

In practice, shared memory code that works often has a
message-passing structure.
Finally, beware of weak consistency

I Use a thread library.
I There are elegant algorithms that avoid locking overhead, even with

weak consistency, but they are beyond the scope of this class.
Mark Greenstreet Shared Memory Multiprocessors CS 418 – Jan. 27, 2016 14 / 17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_27
https://en.wikipedia.org/wiki/2016


Summary
Shared-Memory Architectures

I Use cache-coherence protocols to allow each processor to have its
own cache while maintaining (almost) the appearance of having
one shared memory for all processors.

F A typical protocol: MESI
F The protocol can be implemented by snooping or directories.

I Using cache-memory interconnect for interprocessor
communication provides:

F High-bandwidth
F Low-latency, but watch out for fences, etc.
F High cost for large scale machines.

Shared-Memory Programming
I Need to avoid interference between threads.

F Assertional reasoning (e.g. invariants) are crucial,
much more so than in sequential programming.

F There are too many possible interleavings to handle intuitively.
F In practice, we don’t formally prove complete programs,

but we use the ideas of formal reasoning.
I Real computers don’t provide sequential consistency.

F Use a thread library.

Mark Greenstreet Shared Memory Multiprocessors CS 418 – Jan. 27, 2016 15 / 17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_27
https://en.wikipedia.org/wiki/2016


Preview

January 25: Superscalars and Simultaneous Multi-Threading
Reading: Pacheco, Chapter 2, Sections 2.1 and 2.2.

January 27: Shared-Memory Machines
Reading: Pacheco, Chapter 2, Section 2.3

January 29: Distributed-Memory Machines
Reading: Pacheco, Chapter 2, Sections 2.4 and 2.5.

February 1: Parallel Performance: Speed-up
Reading: Pacheco, Chapter 2, Section 2.6.
Mini-assignment: Mini 3 goes out (I hope)
Homework: Homework 2 – early bird deadline

February 3: Parallel Performance: Modeling
Homework: Homework 2 – hard deadline

February 5: Matrix Multiplication
Reading: Lin & Snyder, Chapter 5, pp. 125–133.
Homework: Mini 3 due

February 10: Midterm
February 10: Something fun

Mark Greenstreet Shared Memory Multiprocessors CS 418 – Jan. 27, 2016 16 / 17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_27
https://en.wikipedia.org/wiki/2016


Review

What is sequential consistency?
Using the MESI protocol, can multiple processors simultaneously
have entries in their caches for the same memory address?
Using the MESI protocol, can multiple processors simultaneously
modify entries in their caches for the same memory address?
How can a cache-coherence protocol be implemented by
snooping?
How do these issues influence good software design practice?

Mark Greenstreet Shared Memory Multiprocessors CS 418 – Jan. 27, 2016 17 / 17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_27
https://en.wikipedia.org/wiki/2016

