Shared Memory Multiprocessors

Mark Greenstreet

CpSc 418 — Jan. 27, 2016

Ouitline:
@ Shared-Memory Architectures
@ Memory Consistency
@ Examples

Mark Greenstreet Shared Memory Multiprocessors CS 418 — Jan. 27, 2016 1/17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_27
https://en.wikipedia.org/wiki/2016
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_27
https://en.wikipedia.org/wiki/2016

Objectives

@ Understand how processors can communicate by sharing
memory.
@ Able to explain the term “sequential consistency”

» Describe a simple cache-coherence protocol, MESI

» Describe how the protocol can be implemented by snooping.

» Be aware that real machines make guarantees that are weaker
than sequential consistency.

Mark Greenstreet Shared Memory Multiprocessors CS 418 — Jan. 27, 2016 2/17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_27
https://en.wikipedia.org/wiki/2016

An Ancient Shared-Memory Machine

CPUO

v

CPU1

!

SWITCH

! Y

! !

MEMO | | MEM1

MEM2 | [MEM3

@ Multiple CPU’s (typically two) shared a memory
@ If both attempted a memory read or write at the same time

» One is chosen to go first.

» Then the other does its operation.
» That'’s the role of the switch in the figure.

@ By using multiple memory units (partitioned by address), and a
switching network, the memory could keep up with the processors.
@ But, now that processors are 100’s of times faster than memory,

this isn’t practical.

Mark Greenstreet Shared Memory Multiprocessors CS 418 — Jan. 27, 2016 3/17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_27
https://en.wikipedia.org/wiki/2016

A Shared-Memory Machine with Caches

CPUO| [CPU 1| e (rilljllJ
A A 1
Y v Y
cache 0| |cache 1| «- | cache
n—1

A
\J

A
\J

@ Caches reduce the number of main memory reads and writes.

@ But, what happens when a processor does a write?

Mark Greenstreet Shared Memory Multiprocessors CS 418 — Jan. 27, 2016

4/17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_27
https://en.wikipedia.org/wiki/2016

The MESI protocol

remote write®, € I = invalid
update memory S = shared
(carefully) E = exclusive
M = modified

write* = write~through
(to memory

write = write—back
(local—cache only)

€ = "spontaneous”

remote
transition

write®, €

@ Caches can share read-only copies of a cache block.
@ When a processor writes a cache block, the first write goes to

main memory.
» The other caches are notified and invalidate their copies.
» This ensures that writeable blocks are exclusive.

Mark Greenstreet Shared Memory Multiprocessors CS 418 — Jan. 27, 2016

5/17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_27
https://en.wikipedia.org/wiki/2016

A typical cache

tag
47:12

4TD—> hit

> data

cache
index
11:4

addr[0:47]

2

position
within
cache—block
(ignored)

tag

data

tag

data

tag

data

tag

data

way0

way 1

way?2

@ Only the read-path is shown. Writing is similar.

@ This is a 16K-byte, 4-way set-associative cache, with 16 byte

cache blocks.

Mark Greenstreet Shared Memory Multiprocessors

way3

CS 418 — Jan. 27, 2016 6/17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_27
https://en.wikipedia.org/wiki/2016

How the cache works

@ Read:
» The address is divided into three pieces: block-offset, cache-index,
and tag.
» The index is used to look up one entry in each “way”.
» The tags from each way are compared with the tag of the address:
* If any tag matches, that way provides the data.
* If no tags match, then a cache miss occurs.
* Some current block is evicted from the cache to make room for the
incoming block.
» The block-offset determines which bytes from the cache block are
returned to the CPU.

@ Writes are similar to reads.

Mark Greenstreet Shared Memory Multiprocessors CS 418 — Jan. 27, 2016 7/17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_27
https://en.wikipedia.org/wiki/2016

Snooping caches (part 1 of 2)

CPU
miss| local Memory
MESI tags data and other
engine snoop CPUs
match| tags
T ¢ shared bus

Each cache has two copies of the tags.

@ One copy is used for operations by the local processor.
@ The other copy is used to monitor operations on the main memory
bus.

» if another processor attempts to read a block which we have in the
exclusive or modified state, we provide the data (and update
main memory).

» if another processor attempts to write a block that we have, we
invalidate our block (updating main memory first if our copy was in
the modified state.

Mark Greenstreet Shared Memory Multiprocessors CS 418 — Jan. 27, 2016 8/17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_27
https://en.wikipedia.org/wiki/2016

Snooping caches (part 2 of 2)

MESI
engine

miss

VAN

local
tags

match

Snoop
tags

data

T

¢

Memory
and other
CPUs

shared bus

Pros and cons:

@ Fairly easy to implement.
@ Doesn’t scale to large numbers of processors.

» All cache misses processed on the same bus.
» Engineering marvels push this with multi-level caches and multiple
buses, but it get very expensive, and still doesn’t scale to 1000s of

processors.

Mark Greenstreet Shared Memory Multiprocessors CS 418 — Jan. 27, 2016

9/17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_27
https://en.wikipedia.org/wiki/2016

Directory schemes

@ Main memory keeps a copy of the data and

» a bit-vector that records which processors have copies, and

» a bit to indicate that one processor has a copy and it may be
modified.

@ A processor accesses main memory as required by the MESI
protocol.

» The memory unit sends messages to the other CPUs to direct them
to take actions as needed by the protocol.

» The ordering of these messages ensures that memory stays
consistent.

Mark Greenstreet Shared Memory Multiprocessors CS 418 — Jan. 27, 2016 10/17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_27
https://en.wikipedia.org/wiki/2016

Sequential Consistency

Memory is said to be sequentially consistent if
@ All memory reads and writes from all processors can be arranged
into a single, sequential order, such that:
» The operations for each processor occur in the global ordering in
the same order as they did on the processor.
» Every read gets the value of the preceding write to the same
address.
@ Sequential consistency corresponds to what programmers think
“ought” to happen.
» Very similar to “serialiazability” for database transactions.

Mark Greenstreet Shared Memory Multiprocessors CS 418 — Jan. 27, 2016 11/17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_27
https://en.wikipedia.org/wiki/2016

MESI Guarantees Sequential Consistency

@ First we prove that at most one processor can have the cache
block for any particular address in the E or M state.

@ Define:
value(addr)
= cachej(addr).data, if 3i. cache;(addr).state € {E,M}
= MEM(addr), otherwise

@ We can show that every read(addr) gets the value value(addr),
and that

@ We can show value(addr) gives the value from the most recent
write to addr.

@ Proof: consider each transition in the protocol. Show that if a
cache line is in state s, E, or M, the value of that line is the correct
one.

Mark Greenstreet Shared Memory Multiprocessors CS 418 — Jan. 27, 2016 12/17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_27
https://en.wikipedia.org/wiki/2016

Weak Consistency

@ A CPU may have multiple cache-misses and protocol
operations in-flight at the same time.

@ Typically, reads can move ahead of writes to maximize

CPU program performance.
@ Why?
cache » Because there may be instructions waiting for the data
from a load.
» A transition from “shared” to “modified” requires

mem mem
read ||| write notifying all processors — this can take a long time.
queue| | [queue » Memory writes don’t happen until the instruction

commits.
memory @ This means that real computers don’t guarantee
interface

sequential consistency.
@ But they still make some promises.
» Look up “Total Store Order” if you want to learn more.

Mark Greenstreet Shared Memory Multiprocessors CS 418 — Jan. 27, 2016 13/17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_27
https://en.wikipedia.org/wiki/2016

Programming Shared Memory Machines

@ We’ll do a bit with Java threads at the end of the term.
@ Shared memory make parallel programming “easier” because:

» One thread can pass an entire data structure to another thread just
by giving a pointer.

» No need to pack-up trees, graphs, or other data structures as
messages and unpack them at the receiving end.

@ Shared memory make parallel programming harder because:

» It's easy to overlook synchronization (control to shared data
structures). Then, we get data races, corrupted data structures,
and other hard-to-track-down bugs.

» A defensive reaction is to wrap every shared reference with a lock.
But locks are slow (that A factor for communication), and this often
results is slow code, or even deadlock.

@ In practice, shared memory code that works often has a
message-passing structure.
@ Finally, beware of weak consistency

» Use a thread library.

» There are elegant algorithms that avoid locking overhead, even with
weak consistency, but they are beyond the scope of this class.

Mark Greenstreet Shared Memory Multiprocessors CS 418 — Jan. 27, 2016 14 /17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_27
https://en.wikipedia.org/wiki/2016

Summary

@ Shared-Memory Architectures
» Use cache-coherence protocols to allow each processor to have its
own cache while maintaining (almost) the appearance of having
one shared memory for all processors.
* A typical protocol: MESI
* The protocol can be implemented by snooping or directories.
» Using cache-memory interconnect for interprocessor
communication provides:
* High-bandwidth
* Low-latency, but watch out for fences, etc.
* High cost for large scale machines.
@ Shared-Memory Programming
» Need to avoid interference between threads.
* Assertional reasoning (e.g. invariants) are crucial,
much more so than in sequential programming.
* There are too many possible interleavings to handle intuitively.
* In practice, we don’t formally prove complete programs,
but we use the ideas of formal reasoning.
» Real computers don’t provide sequential consistency.
* Use a thread library.

Mark Greenstreet Shared Memory Multiprocessors CS 418 — Jan. 27, 2016 15/17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_27
https://en.wikipedia.org/wiki/2016

Preview

January 25: Superscalars and Simultaneous Multi-Threading

Reading: Pacheco, Chapter 2, Sections 2.1 and 2.2.
January 27: Shared-Memory Machines

Reading: Pacheco, Chapter 2, Section 2.3
January 29: Distributed-Memory Machines

Reading: Pacheco, Chapter 2, Sections 2.4 and 2.5.
February 1: Parallel Performance: Speed-up

Reading: Pacheco, Chapter 2, Section 2.6.

Mini-assignment: ~ Mini 3 goes out (I hope)

Homework: Homework 2 — early bird deadline
February 3: Parallel Performance: Modeling

Homework: Homework 2 — hard deadline
February 5: Matrix Multiplication

Reading: Lin & Snyder, Chapter 5, pp. 125-133.

Homework: Mini 3 due

February 10: Midterm
February 10: Something fun

Mark Greenstreet Shared Memory Multiprocessors CS 418 — Jan. 27, 2016 16/17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_27
https://en.wikipedia.org/wiki/2016

Review

@ What is sequential consistency?

@ Using the MESI protocol, can multiple processors simultaneously
have entries in their caches for the same memory address?

@ Using the MESI protocol, can multiple processors simultaneously
modify entries in their caches for the same memory address?

@ How can a cache-coherence protocol be implemented by
snooping?
@ How do these issues influence good software design practice?

Mark Greenstreet Shared Memory Multiprocessors CS 418 — Jan. 27, 2016 17 /17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_27
https://en.wikipedia.org/wiki/2016

