
Computer Architecture Review

Mark Greenstreet

CpSc 418 – Jan. 22, 2016

Mark Greenstreet Computer Architecture Review CS 418 – Jan. 22, 1 / 18

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_22
https://en.wikipedia.org/wiki/2016
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_22

Objectives

Review classical, sequential architectures
I a simple microcoded, machine
I a pipelined, one-instruction per clock cycle machine

Pipelining is parallel execution
I the machine is supposed to appear (nearly) sequential
I introduce the ideas of hazards and dependencies.

Mark Greenstreet Computer Architecture Review CS 418 – Jan. 22, 2 / 18

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_22

Matrix multiply
In C:

for(i = 0; i < n; i++) {
for(j = 0; j < n; j++) {

sum = 0.0;
for(k = 0; k < n; k)

sum += a[i,k]*b[k,j];
c[i,j] = sum;

}
}

Machine-level operations, just the inner-loop:

LOOP TOP:
$x ← Mem($aptr).double
$aptr ← $aptr + 8
$y ← Mem($bptr).double
$bptr ← $bptr + $N8
$z ← $x * $y
$sum ← $sum + $z
branch $aptr 6= $atop, LOOP TOP

Mark Greenstreet Computer Architecture Review CS 418 – Jan. 22, 3 / 18

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_22

Microcoded machines

PC

P
C

µ

µ

ROM
code

REG[0:7] ALU

MEM

addr

data

IR
E

G

Signals

Control

bus−A

bus−B

A simple, microcoded machine

The microcode (µcode) ROM specifies the sequence of
operations necessary to carry out an instruction.
For simplicity, I’m assuming that the op-code bits of the instruction
form the most significant bits of the µcode ROM address, and that
the value of the micro-PC (µPC) form the lower half of the
address.

Mark Greenstreet Computer Architecture Review CS 418 – Jan. 22, 4 / 18

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_22

Matrix multiply on a microcoded machine
$x ← Mem($aptr).double: 5+ cycles:

1. Fetch instruction
2. Decode instruction
3. Fetch register, $aptr
4. Read memory (may take more than one cycle)
5. Write result into register $x

$aptr ← $aptr + 8: 5 cycles
1-3, 5: Like the load operation above.
4: An ALU operation instead of a memory operation.

$z ← $x * $y: 6 cycles
1-3, 5: Like the add operation above.
4: Assuming 2-cycle latency for floating point operations.

See Table 2 in the MIPS R10000 paper. Today’s processors
tend to have higher latencies, typically 3-5 cycles.

Mark Greenstreet Computer Architecture Review CS 418 – Jan. 22, 5 / 18

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_22

Matrix multiply on a microcoded machine (cont).
branch $aptr 6= $atop, LOOP TOP: Five cycles.

1-4 Like an ALU operation.
5 Update the program counter instead of a data register.

TOTAL: 36 cycles.

Mark Greenstreet Computer Architecture Review CS 418 – Jan. 22, 6 / 18

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_22

Microcode: summary
Separates hardware from instruction set.
I Different hardware can run the same software.
I Enabled IBM to sell machines with a wide range of

performance that were all compatible
2 I.e. IBM built an empire and made a fortune on the IBM

360 and its successors.
2 Intel has done the same with the x86.

But, as implemented on slide 4, it’s very sequential.
while(true) {

fetch an instruction;
perform the instruction

}

Instruction fetch is “overhead”
I Motivates coming up with complicated instructions that

perform lots of operations per instruction fetch.
I But these are hard for compilers to use.
I Can we do better?

Mark Greenstreet Computer Architecture Review CS 418 – Jan. 22, 7 / 18

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_22

Pipelined instruction execution

Registers

Instr.
Cache

Data
Cache

data data data

Data

ALU Write−

back

inst.

fetch

inst

ctrl ctrl ctrl ctrl

datadata

op1

op2

addr addr

addr

rs2

Address

decode MEM

MEM A Pipelined (RISC) CPU

rdst

jr

rs1

Successive instructions in each stage
When instruction i in ifetch, instruction i-1 in decode, . . .
Allows throughput of one instruction per cycle.
Favors simple instructions that execute on a single pass through
the pipeline.
I This is known as RISC: “Reduced Instruction Set Computer”
I A modern x86 is CISC on the outside, but RISC on the inside.

Mark Greenstreet Computer Architecture Review CS 418 – Jan. 22, 8 / 18

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_22

What about Dependencies?

Multiple-instructions are in the pipeline at the same time.
An instruction starts before all of its predecessors have completed.
Data hazards occur if
I an instruction can read a different value than would have

been read with a sequential execution of instructions,
I or if a register or memory location is left holding a different

value than it would have had in a sequential execution.
Control hazards occurs if
I an instruction is executed that would not have been executed

in a sequential execution.
I This is because the instruction “depends” on a jump or

branch that hasn’t finished in time.

Mark Greenstreet Computer Architecture Review CS 418 – Jan. 22, 9 / 18

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_22

Data Hazards

An instruction that reads register I may be issued before an earlier
instruction that writes register I completes.
Most RISC processors use bypassing
I Register accesses are “seen” by later pipeline stages.
I Stage J holds an instruction that will write register I,

2 Stage J signals the register file to ignore the access.
2 If stage J has the result, it provides it.
2 Otherwise, stage J tells the decode stage to stall.

Mark Greenstreet Computer Architecture Review CS 418 – Jan. 22, 10 / 18

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_22

Control Hazards

A jump or branch will not take effect until it reaches pipeline stage
where it can be executed.
A few instructions may be fetched after a jump or a taken branch.
Most RISC processors use delay slots
I Branches are executed in the decode stage.
I The instruction after the branch is always fetched.
I Two choices:

2 Sqash that instruction if the branch is taken.
2 Execute it anyway – this is the “delay slot” approach.
2 Now, it’s the compiler’s problem.

Mark Greenstreet Computer Architecture Review CS 418 – Jan. 22, 11 / 18

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_22

Matrix multiplication on a pipelined machine

LOOP TOP:
$x ← Mem($aptr).double
$aptr ← $aptr + 8
$y ← Mem($bptr).double
$bptr ← $bptr + $N8
$z ← $x * $y
branch $aptr 6= $atop, LOOP TOP
$sum ← $sum + $z % delay slot

We moved the $sum ← $sum + $z operation into the branch
delay slot.
This also prevented the floating point add from stalling while
waiting for the floating point multiply to finish.
The loop executes in 7 cycles per iteration.
But what if we have a modern processor with longer operation
latencies?

Mark Greenstreet Computer Architecture Review CS 418 – Jan. 22, 12 / 18

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_22

Matrix multiplication on a pipelined machine

LOOP TOP:
$x ← Mem($aptr).double
$aptr ← $aptr + 8
$y ← Mem($bptr).double
$bptr ← $bptr + $N8
$z ← $x * $y
branch $aptr 6= $atop, LOOP TOP
$sum ← $sum + $z % delay slot

But what if we have a modern processor with longer operation
latencies?
I E.g., an Intel Core i7 has a three cycle latency for floating

point add, and a five-cycle latency for floating point
multiplication.

I It can issue a new multiply and add every cycle.

Mark Greenstreet Computer Architecture Review CS 418 – Jan. 22, 12 / 18

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_22

Matrix multiplication: execution
On the whiteboard

Mark Greenstreet Computer Architecture Review CS 418 – Jan. 22, 13 / 18

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_22

Comparison

the microcoded machine takes 5+ clock-cycles per instruction.
the RISC machine takes 1 clock-cycle per instruction – in the best
case:
I There can be stalls due to cache misses,
I unfilled delay slots, or
I multi-cycle operations.

Can we break the one-cycle-per instruction barrier?

Mark Greenstreet Computer Architecture Review CS 418 – Jan. 22, 14 / 18

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_22

Superscalar Processors

reorder

Float.−Point

MEM

reg.
map

status

IALU1

IALU2

LS

A Superscalar CPU

inst.

fetch

I$

decode

rename
&

Registers
Integer

D$

FP2

FP1

Issue Queues

buffer

Registers

Mark Greenstreet Computer Architecture Review CS 418 – Jan. 22, 15 / 18

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_22

Superscalar Execution

Fetch several, W , instructions each cycle.
Decode them in parallel, and send them to issue queues for the
appropriate functional unit.
But what about dependencies?
I We need to make sure that data and control dependencies

are properly observed.
I Code should execute on a superscalar as if it were executing

on sequential, one-instruction-at-a-time machine.
I Data dependencies can be handled by “register renaming” –

this uses register indices to dynamically create the
dependency graph as the program runs.

I Control dependencies can be handled by “branch
speculation” – guess the branch outcome, and rollback if
wrong.

We’ll take a closer look on Monday.

Mark Greenstreet Computer Architecture Review CS 418 – Jan. 22, 16 / 18

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_22

Preview

January 25: Superscalars and Simultaneous Multi-Threading
Reading: Pacheco, Chapter 2, Sections 2.1 and 2.2.

January 27: Shared-Memory Machines
Reading: Pacheco, Chapter 2, Section 2.3

January 29: Distributed-Memory Machines
Reading: Pacheco, Chapter 2, Sections 2.4 and 2.5.

February 1: Parallel Performance: Speed-up
Reading: Pacheco, Chapter 2, Section 2.6.

February 3: Parallel Performance: Modeling
February 5: Matrix Multiplication

Reading: Lin & Snyder, Chapter 5, pp. 125–133.
February 10: Midterm

Mark Greenstreet Computer Architecture Review CS 418 – Jan. 22, 17 / 18

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_22

Review

How does a pipelined architecture execute instruction in parallel?
What is a data hazard?
What is a control hazard?
What is bypassing?
What is a delay slot?
For further reading on RISC:
“Instruction Sets and Beyond: Computers, Complexity, and Controversy”
R.P. Colwell, et al., IEEE Computer, vol. 18, no. 3,
I You can download the paper for free if your machine is on the

UBC network.
I If you are off-campus, you can use the library’s proxy.

Mark Greenstreet Computer Architecture Review CS 418 – Jan. 22, 18 / 18

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1663000&tag=1
http://services.library.ubc.ca/off-campus-access/connect-from-home/
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_22

