
Reduce Redux

Mark Greenstreet

CpSc 418 – Jan. 18, 2016

Outline:
Finishing Reduce
Scan

Mark Greenstreet Reduce Redux CS 418 – Jan. 18, 2016 1 / ??

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_18
https://en.wikipedia.org/wiki/2016
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_18
https://en.wikipedia.org/wiki/2016


The Reduce Pattern

It’s a parallel version of fold, e.g. lists:foldl and
lists:foldr.
Reduce is described by three functions:

I Leaf(): What to do at the leaves, e.g.r fun() ->
count3s(Data) end.

I Combine(): What to do at intermediate notes, e.g. fun(Left,
Right) -> Left+Right end.

I Root(): What to do with the final result. For count 3s, this is just the
identity function.

Mark Greenstreet Reduce Redux CS 418 – Jan. 18, 2016 2 / ??

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_18
https://en.wikipedia.org/wiki/2016


The wtree module

Part of the course Erlang library.
Operations on worker trees”

I wtree:create(NProcs) -> [pid()]. Create a list of NProcs
processes, organized as a tree.

I wtree:broadcast(W, Task, Arg) -> ok. Execute the
function Task on each process in W. Note: W means “worker pool”.

I wtree:reduce(P, Leaf, Combine, Root) -> term(). A
generalized reduce.

I wtree:reduce(P, Leaf, Combine) -> term(). A
generalized reduce where Root defaults to the identity function.

Mark Greenstreet Reduce Redux CS 418 – Jan. 18, 2016 3 / ??

http://www.ugrad.cs.ubc.ca/~cs418/resources/index.html
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_18
https://en.wikipedia.org/wiki/2016


Store Locally
Processes should store their data locally.
How do we store data in a functional language?

I Our processes are implemented as Erlang functions that receive
messages, process the message, and make a tail-call to be ready
to receive the next message.

I We add a parameter to these functions, ProcState, that is a
mapping from Keys to Values.

What this means when we write code:
I Functions such as Leaf for wtree:reduce or Task for
wtree:broadcast have a parameter for ProcState.

I worker:put(ProcState, Key, Value) ->
NewProcState. Create a new version of ProcState that
associates Value with Key.

I worker:get(ProcState, Key, Default) -> Value.
Return the value associated with Key in ProcState. If no such
value is found, Default is returned. Note: Default can be a
function in which case it is called to determine a default value – see
the documentation.

Mark Greenstreet Reduce Redux CS 418 – Jan. 18, 2016 4 / ??

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_18
https://en.wikipedia.org/wiki/2016


Count3s using wtree – Design

Example problem: I’ve got a list 4 billion elements distributed
across 100 processes.
What should Leaf do?

I A process has a list of 40 million elements.
I I want to know the total number of 3s.
I What should each process report?

What should Combine do?
I I have the answers from my left and right subtrees, how should I

combine them?
What should Root do?

I I have the result for Combine for the whole tree. What is the final
answer for count3s?

Mark Greenstreet Reduce Redux CS 418 – Jan. 18, 2016 5 / ??

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_18
https://en.wikipedia.org/wiki/2016


Count3s using wtree – Code

count3s par(N, P) ->
W = wtree:create(P),
wtree:rlist(W, N, 10, ’Data’),
wtree:barrier(W),
wtree:reduce(W,

fun(ProcState) ->
count3s(workers:get(ProcState, ’Data’)) end,

fun(Left, Right) -> Left+Right end,
% Root is the identity function – that’s the default.

).

Let’s try it:
1> W = wtree:create(4).
[<0.36.0>,<0.37.0>,<0.38.0>,<0.39.0>]
2> examples:count3s par(W, 1000).
105

Seems plausible, but how can we be sure?

Mark Greenstreet Reduce Redux CS 418 – Jan. 18, 2016 6 / ??

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_18
https://en.wikipedia.org/wiki/2016


retrieve – typical use

workers:retrieve(W, Key) returns a list composed of the
results of get(ProcState, Key) for each worker in W.
Example:

3> examples:count3s par(W, 80).
5
4> Data = workers:retrieve(W, ’Data’).
[[8,7,5,5,2,2,9,7,2,1,1,2,5,2,4,8,8,4,2,2],
[2,8,3,2,2,4,8,4,2,10,4,7,3,6,10,6,7,8,8,6],
[4,5,5,1,4,10,4,6,10,4,8,9,10,8,1,10,5,9,8,5],
[10,8,8,2,5,6,7,3,10,10,6,9,4,1,9,7,5,3,9,3]]

5> examples:count3s(lists:append(Data)).
5

Notice how Data is a list of lists.
I Each process returned a list.
I Each of these lists is a list in Data.
I The order of the lists in Data matches the order of the processes in
W.

Mark Greenstreet Reduce Redux CS 418 – Jan. 18, 2016 7 / ??

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_18
https://en.wikipedia.org/wiki/2016


retrieve – general case
retrieve(W, Fun) when is function(Fun,1)
Execute Fun(ProcState) in each process and make a list of the
results. ProcState is the process state as described on slide
slide 4. Note that each process has its own ProcState. For
example,

6> workers:retrieve(W, fun(ProcState) ->
examples:count3s(wtree:get(ProcState, ’Data’)) end).

[0,2,0,3]

retrieve(W, Fun) when is function(Fun,2)
Execute Fun(ProcState, ProcIndex) in each process and make a
list of the results. ProcIndex is the position of the worker process
in W – in other words, the process hd(W), is called with
ProcIndex=1, the process hd(tl(W)), is called with
ProcIndex=2, and so on.
retrieve(W, Key), when Key is anything other than a function
of 1 or 2 arguments is “typical use” described on the previous
slide.

Mark Greenstreet Reduce Redux CS 418 – Jan. 18, 2016 8 / ??

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_18
https://en.wikipedia.org/wiki/2016

