
Reduce and Scan

Mark Greenstreet

CpSc 418 – Jan. 15, 2016

Outline:
It’s about time
Messages
Table of Contents

Mark Greenstreet Reduce and Scan CS 418 – Jan. 15, 2016 1 / 18

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_13
https://en.wikipedia.org/wiki/2016
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_15
https://en.wikipedia.org/wiki/2016

Objectives

Introduce Erlang’s features for concurrency and parallelism
I Spawning processes.
I Sending and receiving messages.

The source code for the examples in this lecture is available here:
procs.erl.

Mark Greenstreet Reduce and Scan CS 418 – Jan. 15, 2016 2 / 18

http://www.ugrad.cs.ubc.ca/~cs418/2015-2/lecture/01-11/src/procs.erl
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_15
https://en.wikipedia.org/wiki/2016

It’s about time

Time to make a tail-call: ∼ 5ns.
Time to create a process: ∼ 1µs.
Time to send a small message (ping-pong): ∼ 360ns

I Time to send a linked list of M small integers: (15ns) ∗ M + 1.8µs
(on bowen)

Time to send a small message: shuffle: 130 . . . 900ns
Time to send a message vs. message size: TBD
What does this say about writing parallel code?

Mark Greenstreet Reduce and Scan CS 418 – Jan. 15, 2016 3 / 18

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_15
https://en.wikipedia.org/wiki/2016

Design Guidelines

make trees, not chains:
I When spawning processes, broadcasting a message, or collecing

results, using a tree structure is generally better than have a master
process spawn each worker, send a message from each worker, or
receive a message from each worker.

store data locally
I It’s tempting to store everything with the master process, send it out

to workers to perform a task, and collect the results back.
F This is a pattern that usually leads to parallel slow down.
F E.g., on my laptop, parallel count 3s runs eight times slower than the

sequential version if I use this approach.
I Better that each worker keeps and uses its own data.

F Example: large, distributed cloud file-systems and data analytics.
F We’ll do the same with count 3s by having each worker construct its

onw random list of integers.

Mark Greenstreet Reduce and Scan CS 418 – Jan. 15, 2016 4 / 18

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_15
https://en.wikipedia.org/wiki/2016

Count3s Design (version 1)

A worker process has two parameters, N and P.
I N is the total number of elements in the list.

F The list will be distributed over the worker processes.
I P is the total number of worker processes in this (sub-)tree.

If a worker process is created with P > 1,
I It creates two child processes.
I Each is the root of a sub-tree with roughly P/2 leaf processes.
I Each of the two subtrees accounts for roughly N/2 list elements.
I This process waits to get the tallies from its children, adds them

together, and sends them to its parent.
If a worker process is created with P == 1,

I It creates a list of N random integers.
I It counts the 3s.
I It sends its tally to its parent.

Mark Greenstreet Reduce and Scan CS 418 – Jan. 15, 2016 5 / 18

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_15
https://en.wikipedia.org/wiki/2016

Count 3s Code (version 1, part 1)

worker(PPid, N, P) when P > 1 ->
MyPid = self(),
N2 = N div 2,
P2 = P div 2,
CPid1 = spawn(fun() -> worker(MyPid, N2, P2) end),
CPid2 = spawn(fun() -> worker(MyPid, N-N2, P-P2) end),
collect([CPid1, CPid2], ready),
PPid ! MyPid, ready, ok,
collect(PPid, go),
CPid1 ! CPid2 ! MyPid, go, ok,
[Tally1, Tally2] = collect([CPid1, CPid2], tally),
PPid ! MyPid, tally, Tally1 + Tally2;

worker(PPid, N, 1) ->
% see next slide

Mark Greenstreet Reduce and Scan CS 418 – Jan. 15, 2016 6 / 18

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_15
https://en.wikipedia.org/wiki/2016

Count 3s Code (version 1, part 2)

worker(PPid, N, P) when P > 1 ->
% see previous slide

worker(PPid, N, 1) ->
MyPid = self(),
Data = misc:rlist(N, 10),
PPid ! {MyPid, ready, ok},
collect(PPid, go),
PPid ! {MyPid, tally, count3s(Data, 0)}.

collect(Pid, Tag) when is pid(Pid) ->
receive

{Pid, Tag, Value} -> Value
after 3000 ->

flush messages(),
exit(time out)

end;
collect(PidList, Tag) when is list(PidList) ->

[collect(Pid, Tag) || Pid <- PidList].

Mark Greenstreet Reduce and Scan CS 418 – Jan. 15, 2016 7 / 18

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_15
https://en.wikipedia.org/wiki/2016

Count3s Design: Critique Version 1

To count 3s with P processes, we spawn a total of P-1 processes:
I P leaves to count the 3s in the sublists.
I P-1 non-leaf processes to combine results.

Notice that the non-leaves just wait while the leaves are working.
I This is wasteful.
I Our design has more processes and more communication than

needed.
A better way:

I When process Pid1 spawns Pid2,
F Pid1 will assign its right sub-tree to Pid2.
F Pid1 will continue working on its left subtree.

I Eventually, all of the processes are leaves, we go to work.

Mark Greenstreet Reduce and Scan CS 418 – Jan. 15, 2016 8 / 18

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_15
https://en.wikipedia.org/wiki/2016

Count3s Design: The revised tree
This slide left blank so you can sketch the picture I’ll draw on the board.

Mark Greenstreet Reduce and Scan CS 418 – Jan. 15, 2016 9 / 18

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_15
https://en.wikipedia.org/wiki/2016

Count3s Design: Version 2

Each process will keep a list of its children.
I In more detail, each process will have two lists, one that goes from

top-to-bottom in the tree, and the other will go from bottom to top.
I Half of the processes are leaf-only – their lists of child processes

will be empty.
If process Pid1 is created for a subtree with more than one node:

I Pid1 will spawn Pid2 to handle the right subtree.
I Pid1 prepends Pid2 to its bottom-to-top list of children.
I Pid1 continues wit the left subtree

If process Pid1 is created for a leaf node, it does the usual, count
3s work:

I create a random list: misc:rlist(N, 10)
I tell the parent it’s ready: ready(PPid, CPids B2T)
I wait to receive a go: go(PPid, CPids T2B)
I count my own 3s: count3s(Data)
I combine the results: combine(PPid, CPids B2T)

Mark Greenstreet Reduce and Scan CS 418 – Jan. 15, 2016 10 / 18

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_15
https://en.wikipedia.org/wiki/2016

Count3s Code: (version 2, part 1)

worker(PPid, N, P)
when is pid(PPid), is integer(N), N >= 0, is integer(P), P >= 1 ->

worker(PPid, N, P, []).

worker(PPid, N, P, CPidList) when P > 1 ->
MyPid = self(),
N2 = N div 2,
P2 = P div 2,
CPid = spawn(fun() -> worker(MyPid, N2, P2, []) end),
worker(PPid, N-N2, P-P2, [CPid | CPidList]);

worker(PPid, N, 1, CPids B2T) ->
% At this point, CPidList is a list of all processes that we have
% spawned from the bottom of the tree (a leaf) towards to top.
CPids T2B = lists:reverse(CPids B2T),
Data = misc:rlist(N, 10), % make our list
ready(PPid, CPids B2T),
go(PPid, CPids T2B),
combine(PPid, CPids B2T, count3s(Data)).

Mark Greenstreet Reduce and Scan CS 418 – Jan. 15, 2016 11 / 18

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_15
https://en.wikipedia.org/wiki/2016

Count3s Code: (version 2, part 2)

ready(PPid, []) -> PPid ! self(), ready, ok;
ready(PPid, [CPid | CTail]) ->

collect(CPid, ready),
ready(PPid, CTail).

go(PPid, CPids) ->
collect(PPid, go),
go2(self(), CPids).

go2(MyPid, []) -> ok;
go2(MyPid, [CPid | CTail]) ->

CPid ! MyPid, go, ok,
go2(MyPid, CTail).

combine(PPid, [], N3s) -> PPid ! self(), tally, N3s;
combine(PPid, [CPid | CTail], N3s) ->

C3s = collect(CPid, tally),
combine(PPid, CTail, N3s + C3s).

Mark Greenstreet Reduce and Scan CS 418 – Jan. 15, 2016 12 / 18

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_15
https://en.wikipedia.org/wiki/2016

The Reduce Pattern

It’s a parallel version of fold, e.g. lists:foldl and
lists:foldr.
Reduce is described by three functions:

Leaf(): What to do at the leaves, e.g.r fun() ->
count3s(Data) end.
Combine(): What to do at the root, e.g. fun(Left,
Right) -> Left+Right end.
Root(): What to do with the final result. For count 3s,
this is just the identity function.

Mark Greenstreet Reduce and Scan CS 418 – Jan. 15, 2016 13 / 18

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_15
https://en.wikipedia.org/wiki/2016

The wtree module

Part of the course Erlang library.
Operations on worker trees”

wtree:create(NProcs) -> [pid()]. Create a
list of NProcs processes, organized as a tree.
wtree:broadcast(W, Task, Arg) -> ok.
Execute the function Task on each process in W.
Note: W means “worker pool”.
wtree:reduce(P, Leaf, Combine, Root) ->
term(). A generalized reduce.
wtree:reduce(P, Leaf, Combine) ->
term(). A generalized reduce where Root defaults
to the identity function.

Mark Greenstreet Reduce and Scan CS 418 – Jan. 15, 2016 14 / 18

http://www.ugrad.cs.ubc.ca/~cs418/resources/index.html
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_15
https://en.wikipedia.org/wiki/2016

Store Locally

As noted on slide 4, processes should store their data locally.
How do we store data in a functional language?

I Our processes are implemented as Erlang functions that receive
messages, process the message, and make a tail-call to be ready
to receive the next message.

I We add a parameter to these functions, State, that is a mapping
from Keys to Values.

What this means when we write code:
I Functions such as Leaf for wtree:reduce or Task for
wtree:broadcast have a parameter for State.

I worker:put(State, Key, Value) -> NewState. Create a
new version of State that associates Value with Key.

I worker:get(State, Key, Default) -> Value. Return the
value associated with Key in State. If no such value is found,
Default is returned. Note: Default can be a function in which
case it is called to determine a default value – see the
documentation.

Mark Greenstreet Reduce and Scan CS 418 – Jan. 15, 2016 15 / 18

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_15
https://en.wikipedia.org/wiki/2016

Count3s using wtree

count3s par(N, P) ->
W = wtree:create(P),
wtree:rlist(W, N, 10, ’Data’),
wtree:barrier(W), % Need to add barrier to wtree
wtree:reduce(W,

fun(ProcState) -> count3s(workers:get(ProcState, ’Data’)) end,
fun(Left, Right) -> Left+Right end

).

Mark Greenstreet Reduce and Scan CS 418 – Jan. 15, 2016 16 / 18

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_15
https://en.wikipedia.org/wiki/2016

Preview

January 18: Reduce and Scan (generalize)
Homework: Homework 1 due 11:59pm

Homework 2 goes out – parallel programming with Erlang
January 20: Architecture Review

Reading: Pacheco, Chapter 2, Sections 2.1 and 2.2.
January 22: Shared-Memory Machines

Reading: Pacheco, Chapter 2, Section 2.3
January 25: Distributed-Memory Machines

Reading: Pacheco, Chapter 2, Sections 2.4 and 2.5.
January 27: Parallel Performance: Speed-up

Reading: Pacheco, Chapter 2, Section 2.6.
January 27: Parallel Performance: Overhead

Mark Greenstreet Reduce and Scan CS 418 – Jan. 15, 2016 17 / 18

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_15
https://en.wikipedia.org/wiki/2016

Review Questions

How do you spawn a new process in Erlang?
What guarantees does Erlang provide (or not) for message
ordering?
Give an example of using patterns to select messages.
Why is it important to use a tail-recursive function for a reactive
process?

I In other words, why is it a bad idea to use a head-recursive function
for a reactive process.

I The answer isn’t explicitly on the slides, but you should be able to
figure it out from what we’ve covered.

Modify one of the examples in this lecture to use a time-out with
one or more receive operations. Try it and show that it works.
Implement the message flushing described in LYSE to show
pending messages on a time-out. Demonstrate how it works.

Mark Greenstreet Reduce and Scan CS 418 – Jan. 15, 2016 18 / 18

http://learnyousomeerlang.com
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_15
https://en.wikipedia.org/wiki/2016

