
Reduce

Mark Greenstreet

CpSc 418 – Jan. 13, 2016

Outline:
It’s about time
Messages
Table of Contents

Mark Greenstreet Reduce CS 418 – Jan. 13, 2016 1 / 6

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_13
https://en.wikipedia.org/wiki/2016
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_13
https://en.wikipedia.org/wiki/2016

Objectives

Introduce Erlang’s features for concurrency and parallelism
I Spawning processes.
I Sending and receiving messages.

The source code for the examples in this lecture is available here:
procs.erl.

Mark Greenstreet Reduce CS 418 – Jan. 13, 2016 2 / 6

http://www.ugrad.cs.ubc.ca/~cs418/2015-2/lecture/01-11/src/procs.erl
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_13
https://en.wikipedia.org/wiki/2016

It’s about time

Time to make a tail-call: ∼ 5ns.
Time to create a process: ∼ 1µs.
Time to send a small message: ping-pong: ∼ 360ns
Time to send a small message: shuffle: 130 . . . 900ns
Time to send a message vs. message size: TBD
What does this say about writing parallel code?

Mark Greenstreet Reduce CS 418 – Jan. 13, 2016 3 / 6

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_13
https://en.wikipedia.org/wiki/2016

The rest of this lecture

Count3s.
Count3s, brute-force.
Count3s with a tree.
The reduce pattern, and examples.

Mark Greenstreet Reduce CS 418 – Jan. 13, 2016 4 / 6

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_13
https://en.wikipedia.org/wiki/2016

Preview

January 13: Reduce and Scan (simple)
Reading: Lin & Snyder, chapter 5, pp. 112–125
Mini-Assignment: Mini-Assignment 2 due 10:00am

January 15: Reduce and Scan (generalize)
Homework: Homework 1 deadline for early-bird bonus (11:59pm)

January 18: Architecture Review
Reading: Pacheco, Chapter 2, Sections 2.1 and 2.2.
Homework: Homework 1 due 11:59pm

Homework 2 goes out – parallel programming with Erlang
January 20: Shared-Memory Machines

Reading: Pacheco, Chapter 2, Section 2.3
January 22: Distributed-Memory Machines

Reading: Pacheco, Chapter 2, Sections 2.4 and 2.5.
January 25-29: Parallel Performance

Reading: Pacheco, Chapter 2, Section 2.6.

Mark Greenstreet Reduce CS 418 – Jan. 13, 2016 5 / 6

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_13
https://en.wikipedia.org/wiki/2016

Review Questions

How do you spawn a new process in Erlang?
What guarantees does Erlang provide (or not) for message
ordering?
Give an example of using patterns to select messages.
Why is it important to use a tail-recursive function for a reactive
process?

I In other words, why is it a bad idea to use a head-recursive function
for a reactive process.

I The answer isn’t explicitly on the slides, but you should be able to
figure it out from what we’ve covered.

Modify one of the examples in this lecture to use a time-out with
one or more receive operations. Try it and show that it works.
Implement the message flushing described in LYSE to show
pending messages on a time-out. Demonstrate how it works.

Mark Greenstreet Reduce CS 418 – Jan. 13, 2016 6 / 6

http://learnyousomeerlang.com
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_13
https://en.wikipedia.org/wiki/2016

Tail Call Time

N
0 200 400 600 800 1000

t
(µ
s)

-2

0

2

4

6

8

10 bowen
thetis bowen.ugrad.cs.ubc.ca:

t = (6.4N + 269)ns, line of best fit
t = 64.3µs, N = 10K
t = 640µs, N = 100K

thetis.ugrad.cs.ubc.ca:
t = (4.7N + 170)ns, line of best fit
t = 46.9µs, N = 10K
t = 466µs, N = 100K

Measurement: start the timing measurement, make N tail calls, end the
timing measurement.
The measurements on this slide and throughput the lecture were made
using the time it:t function from the course Erlang library.

I time it:t(Fun repeatedly calls Fun until about one second has elapsed.
It then reports the average time and standard deviation.

I time it:t has lots of options.

Mark Greenstreet Reduce CS 418 – Jan. 13, 2016 7 / 6

http://www.ugrad.cs.ubc.ca/~cs418/resources/index.html
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_13
https://en.wikipedia.org/wiki/2016

Process Spawning Time

N
0 2 4 6 8 10

t
(µ
s)

0

2

4

6

8

10

12

14

16

18 bowen
thetis bowen.ugrad.cs.ubc.ca:

t = (1.30N + 2.8)µs, line of best fit
t = 127µs, N = 100
t = 1.2ms, N = 1000

thetis.ugrad.cs.ubc.ca:
t = (0.88N + 1.5)µs, line of best fit
t = 89.4µs, N = 100
t = 887µs, N = 1000

Measurement: root spawns Proc1; Proc1 spawns Proc2, and then Proc1
exits; Proc2 spawns Proc3, and then Proc3 exits; . . . ; ProcN sends a
message to the root process, and then ProcN exits. The root process
measures the time from just before spawning Proc1 until receiving the
message from ProcN.

Mark Greenstreet Reduce CS 418 – Jan. 13, 2016 8 / 6

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_13
https://en.wikipedia.org/wiki/2016

Ping-Pong Messages

N
0 200 400 600 800 1000

t
(µ
s)

0

100

200

300

400

500

600

700

800

900 bowen
thetis bowen.ugrad.cs.ubc.ca:

t = (0.73 + 97)µs, line of best fit
t = 8.49ms, N = 10K
t = 96ms, N = 100K

thetis.ugrad.cs.ubc.ca:
t = (0.71 + 2.7)µs, line of best fit
t = 7.17ms, N = 10K
t = 72ms, N = 100K

Measurement: root spawns two processes, Ping and Pong.
In each of N rounds:

I Ping sends a message to Pong.
I Pong receives the message and then sends a message to Ping.
I Ping receives the message from Pong.

Two messages are sent and received per round.
I The average time per message is about 360ns.

Mark Greenstreet Reduce CS 418 – Jan. 13, 2016 9 / 6

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_13
https://en.wikipedia.org/wiki/2016

Shuffling Messages

ping-pong can be “played” on a single CPU – only one process is
active at a time.
I wrote shuffle to try to keep many CPUs busy sending messages.
With shuffle, we have P processors that have N rounds of
messages. . . .
Messages appear to have a sequential bottleneck.

I Need to try again when the processes actually do something.

Mark Greenstreet Reduce CS 418 – Jan. 13, 2016 10 / 6

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_13
https://en.wikipedia.org/wiki/2016

Shuffling on bowen

bowen
N\P 4 8 16 32 64 128
1000 0.666 0.298 0.453 0.202 0.176 0.155
2000 0.448 0.322 0.438 0.202 0.172 0.153
3000 0.315 0.394 0.409 0.199 0.170 0.151
4000 0.316 0.428 0.273 0.198 0.164 0.152
5000 0.315 0.464 0.227 0.195 0.162 0.150
6000 0.319 0.504 0.231 0.201 0.163 0.150
7000 0.318 0.528 0.230 0.197 0.162 0.150
8000 0.317 0.560 0.259 0.195 0.161 0.151
9000 0.317 0.558 0.244 0.194 0.173 0.151

10000 0.315 0.560 0.231 0.194 0.175 0.154

Mark Greenstreet Reduce CS 418 – Jan. 13, 2016 11 / 6

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_13
https://en.wikipedia.org/wiki/2016

Shuffling on thetis

thetis
N\P 4 8 16 32 64 128
1000 0.413 0.338 0.303 0.208 0.155 0.104
2000 0.418 0.334 0.262 0.197 0.143 0.107
3000 0.425 0.333 0.260 0.179 0.124 0.130
4000 0.422 0.336 0.255 0.179 0.123 0.132
5000 0.428 0.340 0.260 0.178 0.130 0.130
6000 0.440 0.340 0.273 0.179 0.172 0.113
7000 0.430 0.328 0.276 0.188 0.298 0.112
8000 0.409 0.325 0.270 0.201 0.152 0.100
9000 0.403 0.408 0.274 0.193 0.153 0.128

10000 0.404 0.486 0.270 0.194 0.141 0.131

Mark Greenstreet Reduce CS 418 – Jan. 13, 2016 12 / 6

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_13
https://en.wikipedia.org/wiki/2016

