
Processes and Messages

Mark Greenstreet

CpSc 418 – Jan. 11, 2016

Outline:
Processes
Messages
Table of Contents

Mark Greenstreet Processes and Messages CS 418 – Jan. 11, 2016 1 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_11
https://en.wikipedia.org/wiki/2016
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_11
https://en.wikipedia.org/wiki/2016

Objectives

Introduce Erlang’s features for concurrency and parallelism
I Spawning processes.
I Sending and receiving messages.

The source code for the examples in this lecture is available here:
procs.erl.

Mark Greenstreet Processes and Messages CS 418 – Jan. 11, 2016 2 / 20

http://www.ugrad.cs.ubc.ca/~cs418/2015-2/lecture/01-11/src/procs.erl
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_11
https://en.wikipedia.org/wiki/2016

A Few Announcements

Mini Assignment revised deadline: Wednesday, Jan. 13, 10am.
Homework 2 will go out Jan. 18; due on Feb. 3 (early bird Feb. 1)
Lecture note bug-bounty protocol

I Please post (alleged) bugs to piazza.
I Only announce them in lecture if they are blocking comprehension

of the material.

Mark Greenstreet Processes and Messages CS 418 – Jan. 11, 2016 3 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_11
https://en.wikipedia.org/wiki/2016

Processes – Overview

The built-in function spawn creates a new process.
Each process has a process-id, pid.

I The built-in function self() returns the pid of the calling process.
I spawn returns the pid of the process that it creates.
I The simplest form is spawn(Fun).

F A new process is created.
F The function Fun is invoked with no arguments in that process.
F When Fun returns, the process terminates.

Mark Greenstreet Processes and Messages CS 418 – Jan. 11, 2016 4 / 20

http://www.erlang.org/doc/man/erlang.html#spawn-1
http://www.erlang.org/doc/man/erlang.html#self-0
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_11
https://en.wikipedia.org/wiki/2016

Processes – a friendly example

hello(N)->
[spawn(fun() -> io:format(

"hello world from process ∼p. I = ∼p∼n",
[self(), I])

end)
|| I <- lists:seq(1,N)

].

Mark Greenstreet Processes and Messages CS 418 – Jan. 11, 2016 5 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_11
https://en.wikipedia.org/wiki/2016

Processes – a friendly example

hello(N)->
[spawn(fun() -> io:format(

"hello world from process ∼p. I = ∼p∼n",
[self(), I])

end)
|| I <- lists:seq(1,N)

].

Let’s run it:
1> c(procs).
{ok,procs}
2> procs:hello(3).
hello from process 1
hello from process 2
hello from process 3
[<0.40.0>,<0.41.0>,<0.42.0>]

Mark Greenstreet Processes and Messages CS 418 – Jan. 11, 2016 5 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_11
https://en.wikipedia.org/wiki/2016

Sending Messages

The “hello world” example was obligatory, but the processes don’t
solve any problem (other than making us all feel welcome).

I To solve tasks in parallel, the processes need to communicate.
I In Erlang, communication is done with messages.

Sending a message: Pid ! Expr.
I Expr is evaluated, and the result is sent to process Pid.
I The value of a send expression is Expr.
I Evaluation “succeeds” even if Pid is no longer a running process.
I Message passing is asynchronous: the sending process can

continue its execution before the receiver gets the message.

Mark Greenstreet Processes and Messages CS 418 – Jan. 11, 2016 6 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_11
https://en.wikipedia.org/wiki/2016

Receiving Messages (short version)

receive
Pattern1 -> Expr1;
Pattern2 -> Expr2;
...
PatternN -> ExprN

end

If there is a pending message for this process that matches one of
the patterns,

I The message is delivered, and the value of the receive
expression is the value of the corresponding Expr.

I Otherwise, the process blocks until such a message is received.

Mark Greenstreet Processes and Messages CS 418 – Jan. 11, 2016 7 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_11
https://en.wikipedia.org/wiki/2016

A simple example

3> MyPid = self().
<0.33.0>
4> spawn(fun() -> MyPid ! "hello world" end).
<0.45.0>
5> receive Msg1 -> Msg1 end.
"hello, world"

Mark Greenstreet Processes and Messages CS 418 – Jan. 11, 2016 8 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_11
https://en.wikipedia.org/wiki/2016

Adding two numbers using processes and messages

The plan:
I We’ll spawn a process in the shell for adding two numbers.
I This child process will receive two numbers, compute the sum, and

send the result back to the parent.
The add process:

add proc(PPid) ->
receive

A -> receive
B ->

PPid ! A+B
end

end.

adder() ->
MyPid = self(),
spawn(fun() add proc(MyPid) end).

Mark Greenstreet Processes and Messages CS 418 – Jan. 11, 2016 9 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_11
https://en.wikipedia.org/wiki/2016

Adder Demo

6> Apid = procs:adder().
<0.44.0>
7> Apid ! 2.
2
8> Apid ! 3.
3
9> receive Sum -> Sum end.
5

Mark Greenstreet Processes and Messages CS 418 – Jan. 11, 2016 10 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_11
https://en.wikipedia.org/wiki/2016

Reactive Processes and Tail Recursion

Often, we want processes that do more than add two numbers
together.
We want processes that wait, receive a message, process the
message, and then wait for the next message.
In Erlang, we do this with recursive functions for the child process:

acc proc(Tally) ->
receive

N when is integer(N) ->
acc proc(Tally+N);

{Pid, total} ->
Pid ! Tally,
acc proc(Tally)

end.

accumulator() ->
spawn(fun() -> acc proc(0) end).

Mark Greenstreet Processes and Messages CS 418 – Jan. 11, 2016 11 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_11
https://en.wikipedia.org/wiki/2016

Accumulator Demo

10> BPid = procs:accumulator().
<0.53.0>
11> BPid ! 1.
1
12> BPid ! 2.
2
13> BPid ! 3.
3.
14> BPid ! {self(), total}.
{<0.33.0>, total}
15> receive T1 -> T1 end.
6

Mark Greenstreet Processes and Messages CS 418 – Jan. 11, 2016 12 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_11
https://en.wikipedia.org/wiki/2016

Accumulator Demo (continued)

16> BPid ! 4.
4.
17> BPid ! {self(), total}.
{<0.33.0>, total}
18> BPid ! 5.
5.
19> BPid ! 6.
6.
20> BPid ! {self(), total}.
{<0.33.0>, total}
21> receive T2 -> T2 end.
10
22> receive T3 -> T3 end.
21

Mark Greenstreet Processes and Messages CS 418 – Jan. 11, 2016 13 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_11
https://en.wikipedia.org/wiki/2016

Message Ordering

Given two processes, Proc1 and Proc2, messages sent from
Proc1 to Proc2 are received at Proc2 in the order in which they
were sent.
Message delivery is reliable: if a process doesn’t terminate, any
message sent to it will eventually be delivered.
Other than that, Erlang makes no ordering guarantees.

I In particular, the triangle inequality is not guaranteed.
I For example, process Proc1 can send message M1 to process

Proc2 and after that send message M2 to Proc3.
I Process Proc3 can receive the message M2, and then send

message M3 to process Proc2.
I Process Proc2 can receive messages M1 and M3 in either order.
I Draw a picture to see why this is violates the spirit of the triangle

inequality.

Mark Greenstreet Processes and Messages CS 418 – Jan. 11, 2016 14 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_11
https://en.wikipedia.org/wiki/2016

Tagging Messages

It’s a very good idea to include “tags” with messages.
This prevents your process from receiving an unintended message:

“Oh, I forgot that another process was going to send me
that. I thought it would happen later.”

For example, my accumulator might be better if instead of just
receiving an integer, it received

{2, add}

Mark Greenstreet Processes and Messages CS 418 – Jan. 11, 2016 15 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_11
https://en.wikipedia.org/wiki/2016

Tracing Processes
When you implement a reactive process with a tail-recursive, it can be
handy to trace the execution. For

Add an io:format call when entering the function and after
matching each receive pattern.
Example:

acc proc(Tally) ->
io:format("∼p: acc proc(∼b)∼n", [self(), Tally]),
receive

N when is integer(N) ->
io:format("∼p: received ∼b∼n", [self(), N]),
acc proc(Tally+N);

Msg = {Pid, total}
io:format("∼p: received ∼p∼n", [self(), Msg]),
Pid ! Tally,
acc proc(Tally)

end.

Try it (e.g. with the example from slide 12.
Don’t forget to delete (or comment out) such debugging output
before releasing your code.

Mark Greenstreet Processes and Messages CS 418 – Jan. 11, 2016 16 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_11
https://en.wikipedia.org/wiki/2016

Time Outs
If your process is waiting for a message that never arrives, e.g.
because

I You misspelled a tag for a message, or
I The receive pattern is slightly different than the message that was

sent, or
I Something went wrong in the sending process, and it died before

sending the message, or
I You got the message ordering slightly wrong, and there’s a cycle of

processes waiting for each other to send something, or
I . . .

Then your process can wait forever, your Erlang shell can hang,
and it’s a very unhappy time in life.
Time-outs can handle these problems more gracefully.

I See Time Out in LYSE .
I Note: time-outs are great for debugging, they should be used with

great caution elsewhere because they are sensitive to changes in
hardware, changes in the scale of the system, and so on.

Mark Greenstreet Processes and Messages CS 418 – Jan. 11, 2016 17 / 20

http://learnyousomeerlang.com/more-on-multiprocessing#time-out
http://learnyousomeerlang.com
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_11
https://en.wikipedia.org/wiki/2016

Summary

Processes are easy to create in Erlang.
I The spawn mechanism can be used to start other processors on

the same CPU or on machines spread around the internet.
Processes communicate through messages

I Message passing is asynchronous.
I The receiver can use patterns to select a desired message.

Reactive processes are implemented with tail-recursive functions.
Time-outs and print statements (e.g. io:format) are handy for
debugging.

Mark Greenstreet Processes and Messages CS 418 – Jan. 11, 2016 18 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_11
https://en.wikipedia.org/wiki/2016

Preview

January 13: Reduce and Scan (simple)
Reading: Lin & Snyder, chapter 5, pp. 112–125
Mini-Assignment: Mini-Assignment 2 due 10:00am

January 15: Reduce and Scan (generalize)
Homework: Homework 1 deadline for early-bird bonus (11:59pm)

January 18: Architecture Review
Reading: Pacheco, Chapter 2, Sections 2.1 and 2.2.
Homework: Homework 1 due 11:59pm

Homework 2 goes out – parallel programming with Erlang
January 20: Shared-Memory Machines

Reading: Pacheco, Chapter 2, Section 2.3
January 22: Distributed-Memory Machines

Reading: Pacheco, Chapter 2, Sections 2.4 and 2.5.
January 25-29: Parallel Performance

Reading: Pacheco, Chapter 2, Section 2.6.

Mark Greenstreet Processes and Messages CS 418 – Jan. 11, 2016 19 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_11
https://en.wikipedia.org/wiki/2016

Review Questions

How do you spawn a new process in Erlang?
What guarantees does Erlang provide (or not) for message
ordering?
Give an example of using patterns to select messages.
Why is it important to use a tail-recursive function for a reactive
process?

I In other words, why is it a bad idea to use a head-recursive function
for a reactive process.

I The answer isn’t explicitly on the slides, but you should be able to
figure it out from what we’ve covered.

Modify one of the examples in this lecture to use a time-out with
one or more receive operations. Try it and show that it works.
Implement the message flushing described in LYSE to show
pending messages on a time-out. Demonstrate how it works.

Mark Greenstreet Processes and Messages CS 418 – Jan. 11, 2016 20 / 20

http://learnyousomeerlang.com
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_11
https://en.wikipedia.org/wiki/2016

Table of Contents
Objectives
Announcements
Processes

I Example: Hello World
Messages

I Sending Messages
I Receiving Messages
I Example: a process to add two numbers

Reactive Processes
I Example: an accumulator

Programming Hints
I Message Ordering
I Tagging Messages
I Tracing Execution
I Using Time-Outs

Summary
Preview of the next two weeks
Review of this lecture
Table of Contents

Mark Greenstreet Processes and Messages CS 418 – Jan. 11, 2016 21 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_11
https://en.wikipedia.org/wiki/2016

