
FUN with FUNctions

Mark Greenstreet

CpSc 418 – January 8, 2016

Outline:
A Running Example
Pattern Matching
Higher-Order Functions
List Comprehensions
Head vs. Tail Recursion
Table of Contents

Mark Greenstreet FUN with FUNctions CS418 – Jan. 8, 2016 1 / 30

Objectives

Learn to use pattern matching to express the expected “shape” of
data
Learn how higher-order functions provide abstractions for
common control patterns

I common examples: map, filter, fold

Learn how list-comprehensions provide a compact way to express
map and filter.
Learn how recursive functions execute and the implications for
writing correct, and efficient code.

Mark Greenstreet FUN with FUNctions CS418 – Jan. 8, 2016 2 / 30

A Running Example

Let’s say we have a list L. We want to produce a list C that gives
the number of occurrences of each element of L. For example,

occurrences([a, b, c, d, b, e, a, q, b, f, e, s]) ->
[{a,2}, {b,3}, {c,1}, {d,1}, {e,2}, {f,1}, {q,1}, {s,1}].

The tuples in the result list can be in any order.
Strategy:

1 Sort L to produce S. Duplicated elements of L appear consecutively
in S.

2 Traverse S counting consecutive occurrences of elements and
building C.

Design:
I The “traverse” step needs a function to recursively walk S.
I I’ll call this function traverse(S, C).
I traverse builds C as it walks down S.

Mark Greenstreet FUN with FUNctions CS418 – Jan. 8, 2016 3 / 30

Example: the code

occurrences(L) ->
S = lists:sort(L),
C = traverse(S, What goes here?),
C.

traverse(S, C) ->

How about an empty list for the “initial” value for C?

Mark Greenstreet FUN with FUNctions CS418 – Jan. 8, 2016 4 / 30

Example: the code

occurrences(L) ->
S = lists:sort(L),
C = traverse(S, []),
C.

traverse(S, C) ->

Now, we need to write traverse. I’ll initially write it using if; so
we can compare with a pattern matching approach later.

Mark Greenstreet FUN with FUNctions CS418 – Jan. 8, 2016 4 / 30

Erlang’s if

Erlang’s if is a multi-way selection:
if cond1 -> expr;

cond2 -> exp2;
...condn -> expn

end

Erlang tries the cond1 through condn expressions in order.
If one evaluates to true, the corresponding expression is
evaluated, and that’s the value for the if expression.
If no condition is true, then an error is thrown – every expression
must have a value.
For more see slide 32 or “What the If” in Learn You Some Erlang.

Mark Greenstreet FUN with FUNctions CS418 – Jan. 8, 2016 5 / 30

http://learnyousomeerlang.com/syntax-in-functions#what-the-if
http://learnyousomeerlang.com

Writing traverse using if

traverse(S, C) ->
if % what should the first condition be?

end.

We plan to recurse along S.
S == [] seems like a good choice for the first case.
In this case, C has all the occurrence counts. We return it.
Examples:

traverse([], []) -> [];
traverse([], [{a,1}, {b,3}, {c,2}]) ->

[{a,1}, {b,3}, {c,2}].

Mark Greenstreet FUN with FUNctions CS418 – Jan. 8, 2016 6 / 30

Writing traverse using if

traverse(S, C) ->
if S =:= [] -> C;

% now what?

end.

The remaining cases have S non-empty.
If C is empty,

I Then, the head of S is a new value, we’ll prepend it to C with a
count of 1.

I Example:
traverse([a, b, b, b, c, c], []) ->

traverse([b, b, b, c, c], [{a,1}]).

Mark Greenstreet FUN with FUNctions CS418 – Jan. 8, 2016 6 / 30

Writing traverse using if

traverse(S, C) ->
if S =:= [] -> C;

C =:= [] -> traverse(tl(S), [{hd(S), 1}]);
% now what?

end.

The remaining cases have S and C non-empty.
We compare the element at the head of S with the “value” part of
the tuple at the head of C.

I If they match, we add one to the count for the tuple at the head of C.
Example:

traverse([b, b, c, c], [{b,1}, {a,1}]) ->
traverse([b, c, c], [{b,2}, {a,1}]);

Mark Greenstreet FUN with FUNctions CS418 – Jan. 8, 2016 6 / 30

Writing traverse using if

traverse(S, C) ->
if S =:= [] -> C;

C =:= [] -> traverse(tl(S), [{hd(S), 1}]);
hd(S) =:= element(1, hd(C)) ->

traverse(tl(S), [setelement(2, hd(C)
element(2, hd(C))+1) | tl(C)]);

% now what?

end.

The remaining case have S and C non-empty, and the head of S
doesn’t match the value part of the tuple at the head of C.

I We create a new tuple for the head of C.
Example:

traverse([c, c], [{b,3}, {a,1}]) ->
traverse([c], [{c,1}, {b,3}, {a,1}]);

Mark Greenstreet FUN with FUNctions CS418 – Jan. 8, 2016 6 / 30

Writing traverse using if

traverse(S, C) ->
if S =:= [] -> C;

C =:= [] -> traverse(tl(S), [{hd(S), 1}]);
hd(S) =:= element(1, hd(C)) ->

traverse(tl(S), [setelement(2, hd(C)
element(2, hd(C))+1) | tl(C)]);

hd(S) =/= element(1, hd(C)) ->
traverse(tl(S), [{hd(S), 1} | C])

end.

That’s all.
Slide slide 11 shows an implementation of traverse using
pattern matching.

Mark Greenstreet FUN with FUNctions CS418 – Jan. 8, 2016 6 / 30

Let’s try it!

1> c(examples).
{ok,examples}
2> examples:occurrences([a, b, c, d, b, e, a, q, b, f, e, s]).
[{s,1},{q,1},{f,1},{e,2},{d,1},{c,1},{b,3},{a,2}]

Yay – it works!!! (for one test case)
But the tuples are backwards by their “value” component.

I That’s OK – the problem description on slide 3 said the tuples can
be in any order.

I We’ll come back to this later.

Now, we’re ready to see how we could use pattern matching with
this problem.

Mark Greenstreet FUN with FUNctions CS418 – Jan. 8, 2016 7 / 30

Pattern Matching
Erlang makes extensive use of pattern matching.

I The examples on this slide are very simple because of the small
Erlang fragment that we have so far.

I More extensive examples will occur on subsequent slides.
Simple example:

3> [Head | Tail] = [1,5,34].
[1,5,34]
4> Head.
1
5> Tail.
[5,34]
6> [X, Y] = [1,4,34].

** ...: no match of right hand side value [1,5,34]
Head and Tail were unbound before executing command 3.
The Erlang run-time finds if there is a way to choose values for Head
and Tail such that the left side of the = operator, [Head | Tail],
matches the right side, L1.
The Erlang run-time finds such a choice of values and sets Head and
Tail accordingly.
If there’s no way to make a match, then an error is reported.

Mark Greenstreet FUN with FUNctions CS418 – Jan. 8, 2016 8 / 30

More Matching
The general form for matching is: LeftSide = RightSide.
LeftSide can be an expression of Erlang values and unbound
variables combined using lists and tuples.
RightSide can be an arbitrary expression.
If a variable name begins with an underscore, the value is ignored.
Examples:
7> [1 | X1] = L1.
[1,5,34]
8> X1.
[5,34]
9> [A1, B1, 2*17] = L1. % The compiler replaces 2*17 with 34.
[1,5,34]
10> [1, 5, 2*C1] = L1.

* 1: illegal pattern % But it’s not a general equation solver!
11> [, B2,] = L1.
[1,5,34]
12> B2.
5

See also: Pattern Matching in LYSE .

Mark Greenstreet FUN with FUNctions CS418 – Jan. 8, 2016 9 / 30

http://learnyousomeerlang.com/syntax-in-functions#pattern-matching
http://learnyousomeerlang.com

Writing traverse using pattern matching

traverse([], C) -> C;
traverse([H | T], []) -> traverse(T, [{H, 1}]);
% the rest is coming soon.

The first clause handles the case when S is empty.
The second clause handles the case when C is empty.

We now need to handle the case when both S and C are
non-empty.

I This means comparing the head of S with the value part of the tuple
at the head of C.

I If they match, we’ll increment the count of C’s tuple.
I Otherwise, we’ll prepend a new tuple to C.

Mark Greenstreet FUN with FUNctions CS418 – Jan. 8, 2016 10 / 30

Writing traverse using pattern matching

traverse([], C) -> C;
traverse([H | T], []) -> traverse(T, [{H, 1}]);
traverse([H | T], [{H, N} | C T]) ->

traverse(T, [{H, N+1} | C T]);
% one more clause to write.

The first clause handles the case when S is empty.
The second clause handles the case when C is empty.
We now need to handle the case when both S and C are
non-empty.

I This means comparing the head of S with the value part of the tuple
at the head of C.

I If they match, we’ll increment the count of C’s tuple.
I Otherwise, we’ll prepend a new tuple to C.

Mark Greenstreet FUN with FUNctions CS418 – Jan. 8, 2016 10 / 30

Writing traverse using pattern matching

traverse([], C) -> C;
traverse([H | T], []) -> traverse(T, [{H, 1}]);
traverse([H | T], [{H, N} | C T]) ->

traverse(T, [{H, N+1} | C T]);
traverse([H | T], C) ->

traverse(T, [{H, 1} | C]).

The first clause handles the case when S is empty.
The second clause handles the case when C is empty.
The third clause handles the case when the head of S matches
the value part of the tuple at the head of C.

I By using H in the pattern for S and in the pattern for C, we make
sure that they match.

The fourth clause handles the case when they head of S doesn’t
correspond to the head of C.

I In this case, we just prepend a new tuple to C.

Mark Greenstreet FUN with FUNctions CS418 – Jan. 8, 2016 11 / 30

Compare the two versions
traverse(S, C) ->

if S =:= [] -> C;
C =:= [] -> traverse(tl(S), [{hd(S), 1}]);
hd(S) =:= element(1, hd(C)) ->

traverse(tl(S), [setelement(2, hd(C)
element(2, hd(C))+1) | tl(C)]);

hd(S) =/= element(1, hd(C)) ->
traverse(tl(S), [{hd(S), 1} | C])

end.

traverse([], C) -> C;
traverse([H | T], []) -> traverse(T, [{H, 1}]);
traverse([H | T], [{H, N} | C T]) ->

traverse(T, [{H, N+1} | C T]);
traverse([H | T], C) ->

traverse(T, [{H, 1} | C]).

Use pattern matching instead of if when patterns are clearer.
That’s most of the time.

Mark Greenstreet FUN with FUNctions CS418 – Jan. 8, 2016 12 / 30

Higher-Order Functions

In Erlang, functions are “first-class citizens”:
I Functions can be bound to variables.
I Functions can be passed as parameters to other functions.
I A function can return a function as its result.

Java and other languages provide similar mechanisms.
I For example, sorting methods that can take a “comparator” object

as a parameter.
I Other examples include call backs, and event handlers

In functional programming, higher-order functions are used:
I To express common programming patterns.
I and all the reasons mentioned above.

Mark Greenstreet FUN with FUNctions CS418 – Jan. 8, 2016 13 / 30

fun Expressions

Erlang provides two mechanisms for creating expressions with function
values:

fun Module:Function/Arity where
I Module is an atom, the name of a module.
I Function is an atom the name of a function exported by Module.
I Arity is the number of arguments of function Module:Function.

fun (Args) -> Expr end
I Example:

13> Plus = fun(X, Y) -> X+Y end.
#Fun<erl eval.12.54118792>
14> Plus(2, 3).
5

See also Anonymous Functions in LYSE .

Mark Greenstreet FUN with FUNctions CS418 – Jan. 8, 2016 14 / 30

http://learnyousomeerlang.com/higher-order-functions#anonymous-functions
http://learnyousomeerlang.com

Some higher-order functions
From the lists module in the standard Erlang library.

lists:map(Fun, List1) -> List2
I Apply Fun to each element of List1 to produce List2.
I Example:

15> L = [1, 2, 3].
[1,2,3]
16> lists:map(fun(X) -> 2*X end, L).
[2,4,6]

lists:foldl(Fun, Acc0, List) ->Acc1
I Combine the elements of List using Fun – work from the left to

right.
I Fun takes two arguments:

F The first is the current element from List.
F The second is the current value of the accumulator.

I Example:
17> lists:foldl(Plus, 0, L).
% Equivalent to: Plus(3, Plus(2, Plus(1, 0))).
6

See also Maps, filters, folds, and more in LYSE .

Mark Greenstreet FUN with FUNctions CS418 – Jan. 8, 2016 15 / 30

http://www.erlang.org/doc/man/lists.html#map-2
http://www.erlang.org/doc/man/lists.html#fold-3
http://learnyousomeerlang.com/higher-order-functions#maps-filters-folds
http://learnyousomeerlang.com

Another example of foldl

Converting strings to decimal:

str to int(S) ->
lists:foldl(fun (C, N) -> 10*N + (C - $0) end, 0, S).

Note that $0 is the character that prints as ’0’.
I put this in the examples module. Let’s try it.

18> c(examples).
{ok,examples}
19> examples:str to int("123").
123

Mark Greenstreet FUN with FUNctions CS418 – Jan. 8, 2016 16 / 30

Implementing traverse with foldl

traverse(S) ->
lists:foldl(fun examples:traverse help/2, ??, S).

traverse help(A, ?) ->
???

What should the “accumulator” be?

Mark Greenstreet FUN with FUNctions CS418 – Jan. 8, 2016 17 / 30

Implementing traverse with foldl

traverse(S) ->
lists:foldl(fun examples:traverse help/2, [], S).

traverse help(A, C) ->
???

What should the “accumulator” be?
Let’s make the accumulator be the C list from our earlier version.

I The initial value of the accumulator is [].

Mark Greenstreet FUN with FUNctions CS418 – Jan. 8, 2016 17 / 30

Implementing traverse with foldl

traverse(S) ->
lists:foldl(fun examples:traverse help/2, [], S).

traverse help(A, C) ->
???

Let’s make the accumulator be the C list from our earlier version.
I The initial value of the accumulator is [].

What should the body of traverse help be?

Mark Greenstreet FUN with FUNctions CS418 – Jan. 8, 2016 17 / 30

Implementing traverse with foldl

traverse(S) ->
lists:foldl(fun examples:traverse help/2, [], S).

traverse help(A, []) -> [{A,1}];
traverse help(A, [{A,N} | T]) -> [{A,N+1} | T];
traverse help(A, C) -> [{A,1} | C];

What should the body of traverse help be?
We can just consider the same cases as we had for the pattern
matching version of traverse:

I If C is empty, make a singleton list.
I If A matches the value-part of the head of C, increment the count.
I Otherwise, prepend a new tuple to C.

Mark Greenstreet FUN with FUNctions CS418 – Jan. 8, 2016 17 / 30

Some more higher order functions

lists:filter(Pred, List1) -> List2
I Return a list of the elements of List1 that satisfy Pred.
I Example: divisible drop (from examples.erl from the Jan. 6

lecture).
divisible drop(N, [A, Tail]) ->

if A rem N == 0 -> divisible drop(N, Tail);
A rem N /= 0 -> [A | divisible drop(N, Tail)]

end.
I divisible drop using lists:filter

divisible drop(N, L) ->
lists:filter(fun (A) -> A rem N =/= 0 end, L).

We’ll see many more examples of higher order functions as we
continue to use Erlang.

Mark Greenstreet FUN with FUNctions CS418 – Jan. 8, 2016 18 / 30

http://www.erlang.org/doc/man/lists.html#filter-2
http://www.ugrad.cs.ubc.ca/~cs418/2015-2/lecture/01-06/src/examples.erl
http://www.ugrad.cs.ubc.ca/~cs418/2015-2/lecture.html#01-06
http://www.erlang.org/doc/man/lists.html#filter-2

List Comprehensions

Map and filter are such common operations, that Erlang has a
simple syntax for such operations.
It’s called a List Comprehension:

I [Expr || Var <- List, Cond, ...].
I Expr is evaluated with Var set to each element of List that satisfies

Cond.
I Example:

20>R = count3s:rlist(5, 1000).
[444,724,946,502,312].
21>[X*X || X <- R, X rem 3 == 0].
[197136,97344].

See also List Comprehensions in LYSE .

Mark Greenstreet FUN with FUNctions CS418 – Jan. 8, 2016 19 / 30

http://www.ugrad.cs.ubc.ca/~cs418/2015-2/lecture/01-04/code.html
http://learnyousomeerlang.com/starting-out-for-real#list-comprehensions
http://learnyousomeerlang.com

List Comprehensions – More Examples

Doubling the elements of a list (compare with slide 15 where L is
bound to [1,2,3]).

22> [2*X || X <- L]. [2,4,6].

Yet another version of divisible drop
divisible drop(N, L) ->

[A || A <- L, A rem N =/= 0].

Mark Greenstreet FUN with FUNctions CS418 – Jan. 8, 2016 20 / 30

Head vs. Tail Recursion

I wrote two versions of computing the sum of the first N natural
numbers:

sum h(0) -> 0; % “head recursive”
sum h(N) -> N + sum h(N-1).

sum t(N) -> sum t(N, 0).
sum t(0, Acc) -> Acc; % “tail recursive”
sum t(N, Acc) -> sum t(N-1, N+Acc).

Here are some run times that I measured:

N thead ttail N thead ttail

1K 21µs 13µs 1M 21ms 11ms
10K 178µs 114µs 10M 1.7s 115ms

100K 1.7ms 1.1ms 100M 28s 1.16s
1G > 8 min 11.6s

Mark Greenstreet FUN with FUNctions CS418 – Jan. 8, 2016 21 / 30

Head vs. Tail Recursion – Comparison

Both grow linearly for N ≤ 106.
I The tail recursive version has runtimes about 2/3 of the

head-recursive version.
For N > 106,

I The tail recursive version continues to have run-time linear in N.
I The head recursive version becomes much slower than the tail

recursive version.
I Additional note: the head-recursive timings were very hard to

reproduce – I’ll explain that shortly.

Mark Greenstreet FUN with FUNctions CS418 – Jan. 8, 2016 22 / 30

Tail Call Elimination
The Erlang compiler optimizes the case that the last operation in a
function is another function call (recursive or otherwise).

I If this were handled in the traditional way, the call would create a new stack
frame, and when the called function returned, this function would copy the
return value to the next frame, and return.

I Instead, the compiler creates code to reuse the current stack frame for the
newly called function, but the return address remains the same. When the
newly called function returns, the return will “skip over” the functions that
ended with tail calls.

I The compiler has turned the recursive function into a while-loop.
I Conclusion: When people tell you that recursion is slower than

iteration – don’t believe them.
The head recursive version creates a new stack frame for each
recursive call.

I I was hoping to run my laptop out of memory and crash the Erlang runtime
– makes a fun, in-class demo.

I But, OSX does memory compression. All of those repeated stack frames
are very compressible. This creates the crazy runtime. Compression slows
the process down dramatically, but it goes faster once the OS has “learned”
the patterns.

Mark Greenstreet FUN with FUNctions CS418 – Jan. 8, 2016 23 / 30

Tail Call Elimination – a few more notes

Can you count on your compiler doing tail call elimination:
I In Erlang, the compiler is required to perform tail-call elimination.

We’ll see why on Monday.
I In Java, the compiler is forbidden from performing tail-call

elimination. This is because the Java security model involves
looking back up the call stack.

I gcc performs tail-call elimination when the -o flag is used.
Is it OK to write head recursive functions?

I Yes! Often, the head-recursive version is much simpler and easier
to read. If you are confident that it won’t have to recurse for millions
of calls, then write the clearer code.

I Yes! Not all recursive functions can be converted to tail-recursion.
F Example: tree traversal.
F Computations that can be written as “loops” in other languages have

tail-recursive equivalents.
F But, recursion is more expressive than iteration.

Mark Greenstreet FUN with FUNctions CS418 – Jan. 8, 2016 24 / 30

Summary (1/3)

Pattern Matching
I An expressive way to write functions according to the shape of the

data they process.
I Patterns are usually much clearer than lots of ifs and functions

like hd, tl, and element to walk the data structure.
I Use patterns when they produce clearer coded.

F Grading will include marks for good coding including: clarity, test
cases, helpful comments.

Higher-order functions
I Higher-order functions provide abstractions for common

programming patterns such as map, fold, and filter.
I Anonymous functions, fun(Args -> Expr end, allow you to write

create function-valued terms (esp. arguments to map, etc.), where
they are used.

Mark Greenstreet FUN with FUNctions CS418 – Jan. 8, 2016 25 / 30

Summary (2/3)

List Comprehensions
Common map and filter operations can be written succinctly as
list-comprehensions.
Unless specifically stated, I won’t require you to write them – this
isn’t a functional programming course (that’s CpSc 312).
I will use list comprehensions in code I use as examples – you’ll
need to be able to read them.

Mark Greenstreet FUN with FUNctions CS418 – Jan. 8, 2016 26 / 30

Summary (3/3)

Tail Call elimination
Tail call elimination avoids creating a new stack frame when the
last operation of a function is to return the value produced by
another function call.
Tail recursive functions are usually a bit faster and use less
memory than their head-recursive counterparts.
This is especially important if the recursion could be very deep (or
unbounded).
On the other hand, head-recursive functions are often simpler to
write.

I Writing simple and clear code is good.
I Unless there is a good reason to believe that the optimizations are

needed.
I “premature optimization is the root of all evil” – D.E. Knuth in

Computer Programming as an Art.

Mark Greenstreet FUN with FUNctions CS418 – Jan. 8, 2016 27 / 30

http://www-cs-faculty.stanford.edu/~uno/
http://delivery.acm.org/10.1145/1290000/1283929/a1974-knuth.pdf

Preview

January 11: Processes and Messages
Reading: Learn You Some Erlang, The Hitchhiker’s Guide . . .

through More on Multprocessing
Mini-Assignment: Mini-Assignment 2 due 10:00am

January 13: Reduce and Scan (simple)
Reading: Lin & Snyder, chapter 5, pp. 112–125

January 15: Reduce and Scan (generalize)
Homework: Homework 1 deadline for early-bird bonus (11:59pm)

Homework 2 goes out – parallel programming with Erlang
January 18: Architecture Review

Reading: Pacheco, Chapter 2, Sections 2.1 and 2.2.
Homework: Homework 1 due 11:59pm

January 20: Shared-Memory Machines
Reading: Pacheco, Chapter 2, Section 2.3

January 22: Distributed-Memory Machines
Reading: Pacheco, Chapter 2, Sections 2.4 and 2.5.

Mark Greenstreet FUN with FUNctions CS418 – Jan. 8, 2016 28 / 30

http://learnyousomeerlang.com
http://learnyousomeerlang.com/the-hitchhikers-guide-to-concurrency
http://learnyousomeerlang.com/more-on-multiprocessing

Review Questions (1/2)
The function, uniq, below replaces all (non-empty)
subsequences of the same value in a list with just one occurrence
of that value. For example,

uniq([a,b,b,c,a,a,a,d]) -> [a,b,c,a,d] Here’s
the code written with if:

uniq(L) ->
if length(L) =< 1 -> L;

hd(L) == hd(tl(L)) -> uniq(tl(L));
true -> [hd(L) | uniq(tl(L))]

end.

Write a new version of uniq using pattern matching.
Consider the count3s function from the Jan. 4 lecture:

count3s([]) -> 0;
count3s([3 | Tail]) -> 1 + count3s(Tail);
count3s([Other | Tail]) -> count3s(Tail).

I Write a new version of count3s using lists:filter and
length.

I Write a new version of count3s using a list comprehension and
length.

Mark Greenstreet FUN with FUNctions CS418 – Jan. 8, 2016 29 / 30

http://www.ugrad.cs.ubc.ca/~cs418/lecture.html#01-04

Review Questions (2/2)

What is a higher-order function?
Write a function

test it(F1, F2, TestCases) where F1 and F2 are
functions with one parameter, and TestCases is a list. The
test it function evaluates F1 and F2 on each element of
TestCases and returns true if they agree on all cases and
false otherwise.

I Is test it a higher order function? Why or why not?
I How can you use list comprehensions and/or higher-order functions

such as and, filter, and foldl in your implementation?
What is the tail recursion?

I Write count3s using tail recursion.
I Describe a situation where it is very important to use tail recursion.
I Describe a situation where it is better not to use tail recursion.

Mark Greenstreet FUN with FUNctions CS418 – Jan. 8, 2016 30 / 30

Supplementary Material

The remaining slides are some handy material that we won’t cover in
lecture, but you can refer to if you find it helpful.

if

when

case

A guide to Erlang Punctuation
Table of Contents.

Mark Greenstreet FUN with FUNctions CS418 – Jan. 8, 2016 31 / 30

if
As noted on slide 5, an Erlang if expression throws an error if
none of the conditions are satisfied.

1> X = 0.
2
2> if X < 0 -> hello;
2> X > 0 -> world
2> end.

** exception error: no true branch found ...

I We can add a “catch-all” by including true as the condition for the
default case:

3> if X < 0 -> hello;
3> X > 0 -> world;
3> true -> ’eh?’
3> end.
’eh?’

I Many Erlang programmers see “true means else” as tacky.
F If there is a condition that is relevant to understanding the final case,

say it. For example, X == 0 -> ’eh?’

Guards often take the role of if – see the next slide.
Mark Greenstreet FUN with FUNctions CS418 – Jan. 8, 2016 32 / 30

When clauses – example
Consider: examples:sum t(1.5).

It runs forever:
sum t(1.5)-> sum t(1.5, 0) -> sum t(0.5, 1.5)

-> sum t(-0.5, 2.0) -> sum t(-1.5, 1.5) -> ...

We want sum t to throw an error if it is called with an argument
that isn’t a non-negative integer.

sum g(N) when is integer(N) and (N >= 3) -> sum t(N, 0).

The ‘g’ is for the version with a guard.
Let’s try it:

1> c(examples).
{ok,examples}
2> examples:sum g(3).
6
3> examples:sum g(1.5).

** exception error: no function clause matching
examples:sum g(1.5) (examples.erl, line 87)

Mark Greenstreet FUN with FUNctions CS418 – Jan. 8, 2016 33 / 30

When clauses

Syntax: when Guard
Guard is a boolean-valued expression

I The guard can consist of constants, variables, arithmetic and
boolean operations, and comparisons.

I Erlang is restrictive about what functions you can use.
F built-in functions that have no side-effects.
F some handy ones: length(List), element(N, Tuple),

is integer(X), is list(X), is tuple(X), . . .

See also Guards, Guards! in LYSE .

Mark Greenstreet FUN with FUNctions CS418 – Jan. 8, 2016 34 / 30

http://learnyousomeerlang.com/syntax-in-functions#guards-guards
http://learnyousomeerlang.com

case

A case expression just does pattern matching.
Example:

4> X = lists:seq(2,5).
[2,3,4,5]
5> case X of
5> [] -> io:format("X is an empty list n");
5> when is list(X)-> io:format("X has p elements n", [length(X)]);
5> -> io:format("X is not a list")
5> end.
X has 4 elements
ok

The ok is the return value from io:format.

Mark Greenstreet FUN with FUNctions CS418 – Jan. 8, 2016 35 / 30

if is subsumed by case
if Cond1 -> Expr1;

...
Condn -> Exprn

end.

is equivalent to

case ok of
when Cond1 -> Expr1;
when ...;
when Condn -> Exprn

end.

Use if when
I the selection criteria are based on the value of the data
I it doesn’t make sense to include the criteria as guards of the function

clauses.
Use case when

I the selection criteria are primarily based on the shape of the data
I include a guard (i.e. when) if the value matters as well.

Mark Greenstreet FUN with FUNctions CS418 – Jan. 8, 2016 36 / 30

case is subsumed by fun
case Expr of

Pattern1 -> Expr1;
...
PatternN -> ExprN

end.

is equivalent to

(fun (Pattern1) -> Expr1;
(...) -> ...;
(PatternN) -> ExprN
end
)(Expr)

But the case form is almost always clearer.
OTOH, the Erlang compiler implements if and case by
converting them to fun.

I This is where many of the compiler-generate function names come
from that you’ll sometimes see in a stack backtrace when an error
occurs.

Mark Greenstreet FUN with FUNctions CS418 – Jan. 8, 2016 37 / 30

Punctuation
Erlang has lots of punctuation: commas, semicolons, periods, and
end.
It’s easy to get syntax errors or non-working code by using the
wrong punctuation somewhere.
Rules of Erlang punctuation:

I Erlang declarations end with a period: .
I A declaration can consist of several alternatives.

F Alternatives are separated by a semicolon: ;
F Note that many Erlang constructions such as case, fun, if, and

receive can have multiple alternatives as well.
I A declaration or alternative can be a block expression

F Expressions in a block are separated by a comma: ,
F The value of a block expression is the last expression of the block.

I Expressions that can consist of multiple alternatives end with end
F case Alternatives end
F fun Alternatives end
F if Alternatives end
F receive Alternatives end

Mark Greenstreet FUN with FUNctions CS418 – Jan. 8, 2016 38 / 30

Table of Contents

A Running Example
I Erlang’s if

Pattern Matching
Higher Order Functions
List Comprehensions
Tail Recursion
Preview
Review
Supplementary material

I More about if
I Erlang’s when
I Erlang’s case
I Punctuation in Erlang
I The Table of Contents

Mark Greenstreet FUN with FUNctions CS418 – Jan. 8, 2016 39 / 30

