
Parallel Computation

Mark Greenstreet

CpSc 418 – Jan. 4, 2016

Outline:
Why Parallel Computation Matters
Course Overview
Our First Parallel Program
The next few weeks
Table of Contents

Mark Greenstreet Parallel Computation CpSc 418 – Jan. 4, 2016 1 / 40

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mrg

Why Parallel Computation Matters

1990 2000 2010

100MHz

 1GHz

 10GHz

year

c
lo

c
k
 f
re

q
u
e
n
c
y

single core
double core
triple core
quad core
hex core

3.3GHz

2
0

0
3

51% annual clock freq. growth

 25W

 50W

 75W

100W

125W

150W

p
o
w

e
r

c
o
n
s
u
m

p
ti
o
n
 (

w
a
tt
s
)

Clock Speed and Power of Intel Processors vs. Year
Released[Wikipedia CPU-Power, 2011]

In the good-old days, processor performance doubled roughly
every 1.5 years.
Single thread performance has seen small gains in the past 12
years.
Need other ways to increase performance and enable new
applications.

Mark Greenstreet Parallel Computation CpSc 418 – Jan. 4, 2016 2 / 40

http://www.cs.ubc.ca/~mrg

Why Sequential Performance Can’t Improve (much)

Power
CPUs with faster clocks use more energy per operation than
slower ones.
For mobile devices: high power limits battery life.
For desktop computers and gaming consoles: cooling high-power
chips requires expensive hardware.
For large servers and clouds, the power bill is a large part of the
operating cost.

Mark Greenstreet Parallel Computation CpSc 418 – Jan. 4, 2016 3 / 40

http://www.cs.ubc.ca/~mrg

More Barriers to Sequential Performance
The memory bottleneck.
I Accessing main memory (i.e. DRAM) takes hundreds of clock

cycles.
I But, we can get high bandwidth.

Limited instruction-level-parallelism.
I CPUs already execute instructions in parallel.
I But, the amount of this ”free” parallelism is limited.

Design complexity.
I Designing a chip with 100 simple processors is way easier

than designing a chip with one big processor.
Reliability.
I If a chip has 100 processors and one fails, there are still 99

good ones.
I If a chip has 1 processor and it fails, then the chip is useless.

See [Asanovic et al., 2006].

Mark Greenstreet Parallel Computation CpSc 418 – Jan. 4, 2016 4 / 40

http://www.cs.ubc.ca/~mrg

Parallel Computers

Mobile devices:
I multi-core to get good performance on apps and reasonable

battery life.
I many dedicated “accelerators” for graphics, WiFi, networking,

video, audio, . . .
Desktop computers
I multi-core for performance
I separate GPU for graphics

Commercial servers
I multiple, multi-core processors with shared memory.
I large clusters of machines connected by dedicated networks.

Mark Greenstreet Parallel Computation CpSc 418 – Jan. 4, 2016 5 / 40

http://www.cs.ubc.ca/~mrg

Outline

Why Does Parallel Computation Matter?
Course Overview
I Topics
I Syllabus
I The instructor and TAs
I The textbook(s)
I Grades

Homework: 35% roughly one HW every two weeks
Midterm: 25% February 10, in class
Final: 40%
Mini-Assignments: see description on slide 19
Bug Bounties: see description on slide 20

I Plagiarism – please don’t
I Learning Objectives

Our First Parallel Program

Mark Greenstreet Parallel Computation CpSc 418 – Jan. 4, 2016 6 / 40

http://www.cs.ubc.ca/~mrg

Topics

Parallel Architectures
Parallel Performance
Parallel Algorithms
Parallel Programming Frameworks

Mark Greenstreet Parallel Computation CpSc 418 – Jan. 4, 2016 7 / 40

http://www.cs.ubc.ca/~mrg

Parallel Architectures

There isn’t one, standard, parallel architecture for everything.
We have:
I Multi-core CPUs with a shared-memory programming model.

Used for mobile device application processors, laptops,
desktops, and many large data-base servers.

I Networked clusters, typically running linux. Used for
web-servers and data-mining. Scientific supercomputers are
typically huge clusters with dedicated, high-performance
networks.

I Domain specific processors
2 GPUs, video codecs, WiFi interfaces, image and sound

processing, crypto engines, network packet filtering, and
so on.

As a consequence, there isn’t one, standard, parallel
programming paradigm.

Mark Greenstreet Parallel Computation CpSc 418 – Jan. 4, 2016 8 / 40

http://www.cs.ubc.ca/~mrg

Parallel Performance

The incentive for parallel computing is to do things that wouldn’t be
practical on a single processor.

Performance matters.
We need good models:
I Counting operations can be very misleading – “adding is free.”
I Communication and coordination are often the dominant

costs.
We need to measure actual execution times of real programs.
I There isn’t a unified framework for parallel program

performance analysis that works well in practice.
I It’s important to measure actual execution time and identify

where the bottlenecks are.
Key concepts with performance:
I Amdahl’s law, linear speed up, overheads.

Mark Greenstreet Parallel Computation CpSc 418 – Jan. 4, 2016 9 / 40

http://www.cs.ubc.ca/~mrg

Parallel Algorithms

We’ll explore some old friends in a parallel context:
I Sum of the elements of an array
I matrix multiplication
I dynamic programming.

And we’ll explore some uniquely parallel algorithms:

I Bitonic sort
I mutual exclusion
I producer consumer

Mark Greenstreet Parallel Computation CpSc 418 – Jan. 4, 2016 10 / 40

http://www.cs.ubc.ca/~mrg

Parallel Programming Frameworks

Erlang: functional, message passing parallelism
I Avoids many of the common parallel programming errors:

races and side-effects.
You can write Erlang programs with such bugs, but it takes
extra effort (for the introductory problems we examine).

I Allows a simple presentation of many ideas.
I But it’s slow, for many applications, when compared with C or

C++.
I OTOH, it finds real use in large-scale distributed systems.

CUDA: your graphics card is a super-computer
I Excellent performance on the “right” kind of problem.
I The data-parallel model is simple, and useful.

Java threads: use your CPU’s many cores
I Perhaps the most treacherous of these three approaches.
I Lets us explore some widely used algorithms.

Mark Greenstreet Parallel Computation CpSc 418 – Jan. 4, 2016 11 / 40

http://www.cs.ubc.ca/~mrg

Syllabus

January: Erlang
Jan. 4-8: Course overview, intro. to Erlang programming.
Jan. 11-15: Parallel programming in Erlang, reduce and scan.
Jan. 18-22: Parallel architectures
Jan. 25-29: Performance analysis

February: Erlang, Midterm, & CUDA
Feb. 1-5: Matrix Multiplication
Feb. 8: Family Day, no class.
Feb. 10: Midterm – in class
Feb. 12: SIMD architectures and GPUs.
Feb. 15-19: Midterm break.
Feb. 22-26: Introduction to CUDA

March: CUDA and Java Threads
April: More Java

Mark Greenstreet Parallel Computation CpSc 418 – Jan. 4, 2016 12 / 40

http://www.cs.ubc.ca/~mrg

Syllabus

January: Erlang
February: Erlang, Midterm, & CUDA
March: CUDA and Java Threads
Feb. 29 – Mar. 4: Matrix multiply with CUDA
Mar. 7-11: Sorting
Mar. 14-18: Dynamic Programming
Mar. 21-23: Introduction to Java Threads
Mar. 30 – Apr. 1: Mutual exclusion

April: More Java
Apr. 4-Apr. 8: Fun with threads

Note: I’ll make adjustments to this schedule as we go.

Mark Greenstreet Parallel Computation CpSc 418 – Jan. 4, 2016 12 / 40

http://www.cs.ubc.ca/~mrg

Administrative Stuff – Who
The instructor
I Mark Greenstreet, mrg@cs.ubc.ca
I ICICS/CS 323, (604) 822-3065
I Office hours: Mondays, 1pm – 2:30pm, ICICS/CS 323

2 Office hours will change if the proposed time doesn’t
work for many students in the class,

2 or if I end up with another meeting scheduled at that time.
2 You can always send me e-mail to make an appointment.

The TAs
Golnaz Jahesh, golnaz.jahesh@gmail.com

Office Hours: Fridays, 11am – 12 noon, Demco 150
Minchen Li, minchenl@cs.ubc.ca

Office Hours: Thursdays, 2:15pm – 3:15pm, Demco 150
Course webpage: http://www.ugrad.cs.ubc.ca/˜cs418.
Online discussion group: on piazza.

Mark Greenstreet Parallel Computation CpSc 418 – Jan. 4, 2016 13 / 40

mailto:mrg@cs.ubc.ca
mailto:golnaz.jahesh@gmail.com
mailto:minchenl@cs.ubc.ca
http://www.ugrad.cs.ubc.ca/~cs418
http://www.piaza.com
http://www.cs.ubc.ca/~mrg

Textbook(s)

For Erlang: Learn You Some Erlang For Great Good, Fred Hébert,
I Free! On-line at http://learnyousomeerlang.com.
I You can buy the dead-tree edition at the same web-site if you like.

For CUDA: Programming Massively Parallel Processors: A
Hands-on Approach (2nd ed.), D.B. Kirk and W-M.W. Hwu.
I Please get a copy by mid-February – I’ll assign readings starting

Feb. 22. It’s available at Amazon.ca and many other places.

I’ll hand-out copies of some book chapters:
I Principles of Parallel Programming (chap. 5), C. Lin & L. Snyder –

for the reduce and scan algorithms.
I An Introduction to Parallel Programming (chap. 2), P.S. Pacheco –

for a survey of parallel architectures.
I The Art of Multiprocessor Programming (chap. TBD), M. Herlihy &

N. Shavit – for something fun with Java threads.
I Probably a few journal, magazine, or conference papers.

Mark Greenstreet Parallel Computation CpSc 418 – Jan. 4, 2016 14 / 40

http://learnyousomeerlang.com
http://www.amazon.ca/Programming-Massively-Parallel-Processors-Hands-/dp/0124159923/ref=sr_1_1?s=books&ie=UTF8&qid=1451335353&sr=1-1&keywords=programming+massively+parallel+processors
http://www.cs.ubc.ca/~mrg

Why so many texts?

There isn’t one, dominant parallel architecture or programming
paradigm.
The Lin & Snyder book is a great, paradigm independent
introduction,
But, I’ve found that descriptions of real programming frameworks
lack the details that help you write real code.
So, I’m using several texts, but
I You only have to buy one! ,

Mark Greenstreet Parallel Computation CpSc 418 – Jan. 4, 2016 15 / 40

http://www.cs.ubc.ca/~mrg

Grades

Homework: 35% roughly one assignment every two weeks
Midterm: 25% February 10, in class
Final: 40%
Mini-Assignments: see description on slide 19
Bug Bounties: see description on slide 20

Mark Greenstreet Parallel Computation CpSc 418 – Jan. 4, 2016 16 / 40

http://www.cs.ubc.ca/~mrg

Homework

Collaboration policy
I You are welcome and encouraged to discuss the homework

problems with other students in the class, with the TAs and me, and
find relevant material in the text books, other book, on the web, etc.

I You are expected to work out your own solutions and write your
own code. Discussions as described above are to help understand
the material. Your solutions must be your own.

I You must properly cite your collaborators and any outside sources
that you used. You don’t need to cite material from class, the
textbooks, or meeting with the TAs or instructor. See slide 22 for
more on the plagiarism policy.

Late policy
I Each assignment has an “early bird” date before the main date.

Turn in you assignment by the early-bird date to get a 5% bonus.
I No late homework accepted.

Mark Greenstreet Parallel Computation CpSc 418 – Jan. 4, 2016 17 / 40

http://www.cs.ubc.ca/~mrg

Exams

Midterm, in class, on February 10.
Final exam will be scheduled by the registrar.
Both exams are open book, open notes, open homework and
solutions, open anything printed on paper.
I You can bring a calculator.
I No communication devices: laptops, tablets, cell-phones, etc.

Mark Greenstreet Parallel Computation CpSc 418 – Jan. 4, 2016 18 / 40

http://www.cs.ubc.ca/~mrg

Mini-Assignments

Mini-assignments
I Worth 20% of points missed from HW and exams.
I There will be 5-10 such mini-assignments.
I The first one will be available on Jan. 4 and due Jan. 8.

2 I will post it at:
http://www.ugrad.cs.ubc.ca/˜cs418/2015-2/mini/1/mini1.pdf

2 Note 1: this one is “optional” – I’ll only include it in your
average for mini-assignments if you submit a solution.

2 Note 2: If you’re on the class registration wait-list, then do
it. I expect only a few openings, and priority will be given
to those who do well on the first two mini-assignments.

Mark Greenstreet Parallel Computation CpSc 418 – Jan. 4, 2016 19 / 40

http://www.ugrad.cs.ubc.ca/~cs418/2015-2/mini/1/mini1.pdf
http://www.cs.ubc.ca/~mrg

Bug Bounties

If I make a mistake when stating a homework problem, then the
first person to report the error gets extra credit.
I If the error would have prevented solving the problem, then

the extra credit is the same as the value of the problem.
I Smaller errors get extra credit in proportion to their severity.

Likewise, bug bounties are awarded (as homework extra credit) for
finding errors in mini-assignments, lecture slides, the course
web-pages, code I provide, etc.
The midterm and final have bug bounties awarded in midterm and
final exam points respectively.
If you find an error, report it.
I Suspected errors in homework, lecture notes, and other

course materials should be posted to piazza.
I The first person to post a bug gets the bounty.

Mark Greenstreet Parallel Computation CpSc 418 – Jan. 4, 2016 20 / 40

http://www.cs.ubc.ca/~mrg

Grades: the big picture

RawGrade = 0.35 ∗ HW + 0.25 ∗MidTerm + 0.40 ∗ Final

MiniBonus = 0.20 ∗ (1−min(RawGrade,1)) ∗Mini

BB = 0.35 ∗ BBHW + 0.25 ∗ BBMT + 0.40 ∗ BBFX

CourseGrade = min(RawGrade + MiniBonus + BB,1)× 100%

Mini-assignments:
If your raw grade is 90%, you can get at most 2% from the minis. You
can afford to skip them if you’re doing well and want to spend your on
other courses.

If your raw grade is 70%, you can get at most 6% from the minis. This
can move your letter grade up a notch (e.g. C+ to B−).

If your raw grade is 45%, you can get up to 11% from the minis. Do the
mini-assignments – I hate turning in failing grades.

Mark Greenstreet Parallel Computation CpSc 418 – Jan. 4, 2016 21 / 40

http://www.cs.ubc.ca/~mrg

Grades: the big picture

RawGrade = 0.35 ∗ HW + 0.25 ∗MidTerm + 0.40 ∗ Final

MiniBonus = 0.20 ∗ (1−min(RawGrade,1)) ∗Mini

BB = 0.35 ∗ BBHW + 0.25 ∗ BBMT + 0.40 ∗ BBFX

CourseGrade = min(RawGrade + MiniBonus + BB,1)× 100%

I’ll probably toss in some extra credit marks into the regular HW –
these tend to be “unreasonable” problems. They are intended to
be fun challenges for those who are otherwise blowing the course
away and would enjoy learning more.
Bug-bounties are for everyone. They reward you for looking at the
HW when it first comes out, and not waiting until the day before it
is due. ,

Mark Greenstreet Parallel Computation CpSc 418 – Jan. 4, 2016 21 / 40

http://www.cs.ubc.ca/~mrg

Plagiarism

I have a very simple criterion for plagiarism:
Submitting the work of another person, whether that be another student,
something from a book, or something off the web and representing it as your
own is plagiarism and constitutes academic misconduct.

If the source is clearly cited, then it is not academic misconduct.
If you tell me “This is copied word for word from Jane Foo’s solution” that is not
academic misconduct. It will be graded as one solution for two people and each
will get half credit. I guess that you could try telling me how much credit each of
you should get, but I’ve never had anyone try this before.

I encourage you to discuss the homework problems with each other.
If you’re brainstorming with some friends and the key idea for a solution comes
up, that’s OK. In this case, add a note to your solution that lists who you
collaborated with.

More details at:
I http://www.ugrad.cs.ubc.ca/˜cs418/plagiarism.html
I http://learningcommons.ubc.ca/guide-to-academic-integrity/

Mark Greenstreet Parallel Computation CpSc 418 – Jan. 4, 2016 22 / 40

http://www.ugrad.cs.ubc.ca/~cs418/plagiarism.html
http://learningcommons.ubc.ca/guide-to-academic-integrity/
http://www.cs.ubc.ca/~mrg

Learning Objectives (1/2)

Parallel Algorithms
I Familiar with parallel patterns such as reduce, scan, and

tiling.
I Can apply these patterns to new problems.
I Can describe parallel algorithms for matrix operations,

sorting, dynamic programming, and process coordination.
Parallel Architectures
I Can describe shared-memory, message-passing, and SIMD

architectures.
I Can describe a simple cache-coherence protocol.
I Can identify how communication latency and bandwidth are

limited by physical constraints in these architectures.
I Can describe the difference between bandwidth and inverse

latency, and how these impact parallel architectures.

Mark Greenstreet Parallel Computation CpSc 418 – Jan. 4, 2016 23 / 40

http://www.cs.ubc.ca/~mrg

Learning Objectives (2/2)

Parallel Performance
I Understands the concept of “speed-up”: can calculate it from

simple execution models or measured exeuction times.
I Can identify key bottlenecks for parallel program performance

including communication latency and bandwidth,
synchronization overhead, and intrinsically sequential code.

Parallel Programming Frameworks
I Can implement simple parallel programs in Erlang, CUDA,

and Java threads.
I Can describe the differences between these paradigms.
I Can identify when one of these paradigms is particularly

well-suited (or badly suited) for a particular application.

Mark Greenstreet Parallel Computation CpSc 418 – Jan. 4, 2016 24 / 40

http://www.cs.ubc.ca/~mrg

Lecture Outline

Why Does Parallel Computation Matter?
Course Overview
Our First Parallel Program
I Erlang quick start
I Count 3s
I Counting 3’s in parallel

2 The root process
2 Spawning worker processes
2 The worker processes
2 Running the code

Mark Greenstreet Parallel Computation CpSc 418 – Jan. 4, 2016 25 / 40

http://www.cs.ubc.ca/~mrg

Erlang Intro – very abbreviated!

Erlang is a functional language:
I Variables are given values when declared, and the value

never changes.
I The main data structures are lists, [Head | Tail], and

tuples (covered later).
I Extensive use of pattern matching.

The source code for the examples in this lecture is available at:
http://www.ugrad.cs.ubc.ca/˜cs418/2015-2/lecture/01-04/code.html

Mark Greenstreet Parallel Computation CpSc 418 – Jan. 4, 2016 26 / 40

http://www.ugrad.cs.ubc.ca/~cs418/2015-2/lecture/01-04/code.html
http://www.cs.ubc.ca/~mrg

Lists

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100] is a list of 10
elements.
If L1 is a list, then [0 | L1] is the list obtained by prepending
the element 0 to the list L1. In more detail:

1> L1 = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100].
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
2> L2 = [0 | L1].
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
3> L3 = [0 , L1].
[0, [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]]

Of course, we traverse a list by using recursive functions:

Mark Greenstreet Parallel Computation CpSc 418 – Jan. 4, 2016 27 / 40

http://www.cs.ubc.ca/~mrg

Lists traversal example: sum

sum(List) ->
if (length(List) == 0) -> 0;

(length(List) > 0) -> hd(List) + sum(tl(List))
end.

length(L) returns the number of elements in list L.
hd(L) returns the first element of list L (the head), and throws an
exception if L is the empty list.
hd([1, 2, 3]) = 1. hd([1]) = 1 as well.
tl(L) returns the list of all elements after the first (the tail).
tl([1, 2, 3]) = [2, 3]. tl([1]) = [].
See sum wo pm (“sum without pattern matching”) in simple.erl

Mark Greenstreet Parallel Computation CpSc 418 – Jan. 4, 2016 28 / 40

http://www.ugrad.cs.ubc.ca/~cs418/2015-2/lecture/01-04/src/simple.erl
http://www.cs.ubc.ca/~mrg

Pattern Matching – first example

We can use Erlang’s pattern matching instead of the if expression:

sum([]) -> 0;
sum([Head | Tail]) -> Head + sum(Tail).

sum([Head | Tail]) matches any non-empty list with Head
being bound to the value of the first element of the list, and Tail
begin bound to the list of all the other elements.
More generally, we can use patterns to identify the different cases
for a function.
This can lead to very simple code where function definitions follow
the structure of their arguments.
See sum in simple.erl

Mark Greenstreet Parallel Computation CpSc 418 – Jan. 4, 2016 29 / 40

http://www.ugrad.cs.ubc.ca/~cs418/2015-2/lecture/01-04/src/simple.erl
http://www.cs.ubc.ca/~mrg

Count 3’s: a simple example

Given an array (or list) with N items, return the number of those
elements that have the value 3.

count3s([]) -> 0;
count3s([3 | Tail]) -> 1 + count3s(Tail);
count3s([Other | Tail]) -> count3s(Tail).

We’ll need to put the code in an erlang module. See count3s in
count3s.erl for the details.
To generate a list of random integers, count3s.erl includes a
function rlist(N, M) that returns a list of N integers randomly
chosen from 1..M.

Mark Greenstreet Parallel Computation CpSc 418 – Jan. 4, 2016 30 / 40

http://www.ugrad.cs.ubc.ca/~cs418/2015-2/lecture/01-04/src/count3s.erl
http://www.ugrad.cs.ubc.ca/~cs418/2015-2/lecture/01-04/src/count3s.erl
http://www.cs.ubc.ca/~mrg

Running Erlang

bash-3.2$ erl
Erlang/OTP 18 [erts-7.0] [source] ...

Eshell V7.0 (abort with ∧G)

1> c(count3s).
{ok,count3s}
2> L20 = count3s:rlist(20,5).
[3,4,5,3,2,3,5,4,3,3,1,2,4,1,3,2,3,3,1,3]
3> count3s:count3s(L20).
9
4> count3s:count3s(count3s:rlist(1000000,10)).
99961
5> q().
ok
6> bash-3.2$

Mark Greenstreet Parallel Computation CpSc 418 – Jan. 4, 2016 31 / 40

http://www.cs.ubc.ca/~mrg

A Parallel Version

to workers.

list of N
random
integers
in [1..M].

receive

NumProcspawn

distribute the list.
worker processes and

to parent
send ’ready’ wait for ’go’

from parent.
count 3s in
our piece of
the list.

send our total
to parent

done
send

receive count3s send

worker
processes

wait for
’ready’

worker.
each
from

spawnrlist sendreceive

count 3s
sequentially.

report

report.
and
compare

count3s done

receive totals from

grand total.

workers and
compute

T0 T1 T2 T3time

root
process

send ’go’
create a

Mark Greenstreet Parallel Computation CpSc 418 – Jan. 4, 2016 32 / 40

http://www.cs.ubc.ca/~mrg

The Root Process

main(N, M, NumProc) ->
MyPid = self(), % Get the root process’s id
R = rlist(N, M), % Make a list of random numbers
T0 = erlang:monotonic time(), % Record the time
WPids = workers spawn(R, NumProc, MyPid), % Spawn workers
T1 = erlang:monotonic time(), % Record the time
workers go(WPids, MyPid), % Tell workers to start counting their 3s
N3s par = workers sum(WPids), % Collect the results and compute total
T2 = erlang:monotonic time(), % Record the time
N3s seq = count3s(R), % Now count the 3s sequentially
T3 = erlang:monotonic time(), % Record the time
... % print results and return

See main(N, M, NumProcs) in count3s.erl

Mark Greenstreet Parallel Computation CpSc 418 – Jan. 4, 2016 33 / 40

http://www.ugrad.cs.ubc.ca/~cs418/2015-2/lecture/01-04/src/count3s.erl
http://www.cs.ubc.ca/~mrg

Spawning the Workers

workers spawn(List, 0, MyPid) -> []; % 0 workers -> empty list
workers spawn(List, NumProc, MyPid) -> % The recursive case
Len = length(List),
{Prefix, Rest} = lists:split(Len div NumProc, List),
% spawn WPid to work on Prefix:
WPid = spawn(count3s, worker, [MyPid, Prefix]),
receive {WPid, ready} -> ok end, % wait for WPid to say ’ready’
% spawn remaining workers to work on Rest:
[WPid | workers spawn(Rest, NumProc-1, MyPid)].

See workers spawn in count3s.erl
worker is the name for the function to call in the spawned
process. It’s described on slide 36.

Mark Greenstreet Parallel Computation CpSc 418 – Jan. 4, 2016 34 / 40

http://www.ugrad.cs.ubc.ca/~cs418/2015-2/lecture/01-04/src/count3s.erl
http://www.cs.ubc.ca/~mrg

workers go and workers sum

workers go([], MyPid) -> ok; % All workers notified. We’re done.
workers go([Wpid | Tail], MyPid) ->

Wpid ! {MyPid, go}, % Tell our worker to start counting
workers go(Tail, MyPid). % Recurse to handle the remaining workers

workers sum([]) -> 0; % base case
workers sum([Wpid | Tail]) -> % recursive case

% Receive tally from our worker and add to total from the remaining workers:
(receive {Wpid, N3s} -> N3s end) + workers sum(Tail).

See workers go and workers sum in count3s.erl

Mark Greenstreet Parallel Computation CpSc 418 – Jan. 4, 2016 35 / 40

http://www.ugrad.cs.ubc.ca/~cs418/2015-2/lecture/01-04/src/count3s.erl
http://www.cs.ubc.ca/~mrg

The worker processes

% PPid is the pid for the root process.
% MyStuff is our segment of the list in which we’re counting 3s.
worker(PPid, MyStuff) ->

MyPid = self(),
PPid ! {MyPid, ready}, % tell the root we’re running
receive {PPid, go} -> ok end, % wait for ’go’
My3s = count3s(MyStuff), % count our threes
PPid ! {MyPid, My3s}, % send our count to our parent
ok. % that’s all!

See worker in count3s.erl

Mark Greenstreet Parallel Computation CpSc 418 – Jan. 4, 2016 36 / 40

http://www.ugrad.cs.ubc.ca/~cs418/2015-2/lecture/01-04/src/count3s.erl
http://www.cs.ubc.ca/~mrg

Let’s try it
On my laptop with a two-core, i5 CPU:

1> count3s:main(10000000, 10, 8).
Random list of 10000000 values from 1..10 has 1001092 3s
Sequential time: 0.1052 seconds
Parallel time (without spawn): 0.0418 sec., speed-up = 2.52
Parallel time (including spawn): 0.8791 sec., speed-up = 0.12

Not bad for a two-core CPU!
I The “super-linear” speed-up is due to multi-threading.
I We’ll examine multi-threading in a few weeks.

The version that includes the spawn time has a slow-down:
I This is because erlang copies the list when spawning the child.
I It’s tempting to create a bunch of workers, send them data, and wait

for them to respond.
I It’s much better to keep the workers available, and keep the data on

the workers.
I Communication cost is one of the biggest overheads for

parallel programs.
thetis.ugrad.cs.ubc.ca gets a speed up of about 12 when
running 24 threads (ignoring spawn-time).

Mark Greenstreet Parallel Computation CpSc 418 – Jan. 4, 2016 37 / 40

http://www.cs.ubc.ca/~mrg

If you’re on the class waiting list
The course is already slightly over-subscribed, so there will only
be a few openings available. /
The department will give strong preference to those who do the
mini-assignments:
I Mini-assignment 1 will be released on the morning of Jan. 4 at

http://www.ugrad.cs.ubc.ca/˜cs418/2015-2/mini/1/mini1.pdf

I Mini-assignment 1 is due on Friday, Jan. 8 at 10:00am.
I Mini-assignment 2 will go out on Jan. 6 at

http://www.ugrad.cs.ubc.ca/˜cs418/2015-2/mini/2/mini2.pdf

I Mini-assignment 2 will be due on Jan. 11 at 10:00am.
I am also teaching CpSc 521, the graduate version of this course.
I If you have a GPA > 80 and are interested more research

oriented version of this course, talk to me after class or send
me e-mail

I You can do this even if you aren’t on the waiting list –
someone who is on the list will thank you. ,.

Mark Greenstreet Parallel Computation CpSc 418 – Jan. 4, 2016 38 / 40

http://www.ugrad.cs.ubc.ca/~cs418/2015-2/mini/1/mini1.pdf
http://www.ugrad.cs.ubc.ca/~cs418/2015-2/mini/2/mini2.pdf
mailto:mrg@cs.ubc.ca
http://www.cs.ubc.ca/~mrg

Preview of the next two weeks
January 6: Introduction to Erlang Programming

Reading: Learn You Some Erlang, the first four sections – Introduction
through Modules. Feel free to skip the stuff on bit syntax
and binary comprehensions.

Mini-Assignment: Mini-Assignment 2 goes out
January 8: More FUN with Erlang FUNctions

Reading: Learn You Some Erlang, the next four sections –
Syntax in Functions through Higher Order Functions

Mini-Assignment: Mini-Assignment 1 due 10:00pm
Homework: Homework 1 goes out – simple programming with Erlang

January 11: Processes and Messages
Reading: Learn You Some Erlang, The Hitchhiker’s Guide . . .

through More on Multprocessing
Mini-Assignment: Mini-Assignment 2 due 10:00am

January 13: Reduce and Scan (simple)
Reading: Lin & Snyder, chapter 5, pp. 112–125

January 15: Reduce and Scan (generalize)
Homework: Homework 1 deadline for early-bird bonus (11:59pm)

Homework 2 goes out – parallel programming with Erlang
January 18: Architecture Review

Reading: Pacheco, Chapter 2, Sections 2.1 and 2.1.
Homework: Homework 1 due 11:59pm

Mark Greenstreet Parallel Computation CpSc 418 – Jan. 4, 2016 39 / 40

http://learnyousomeerlang.com
http://learnyousomeerlang.com/introduction
http://learnyousomeerlang.com/modules
http://learnyousomeerlang.com/starting-out-for-real#bit-syntax
http://learnyousomeerlang.com/starting-out-for-real#binary-comprehensions
http://learnyousomeerlang.com
http://learnyousomeerlang.com/syntax-in-functions
http://learnyousomeerlang.com/higher-order-functions
http://learnyousomeerlang.com
http://learnyousomeerlang.com/the-hitchhikers-guide-to-concurrency
http://learnyousomeerlang.com/more-on-multiprocessing
http://www.cs.ubc.ca/~mrg

Review Questions

Name one, or a few, key reasons that parallel programming is
moving into mainstream applications.
How does the impact of your mini assignment total on your final
grade depend on how you did on the other parts of the class?
What are bug-bounties?
What is the count 3’s problem?
How did we measure running times to compute speed up?
I Why did one approach show a speed-up greater than the

number of cores used?
I Why did the other apporach show that the parallel version

was slower than the sequential one?

Mark Greenstreet Parallel Computation CpSc 418 – Jan. 4, 2016 40 / 40

http://www.cs.ubc.ca/~mrg

Supplementary Material

Erlang Resources
Bibliography
Table of Contents – at the end!!!

Mark Greenstreet Parallel Computation CpSc 418 – Jan. 4, 2016 41 / 40

http://www.cs.ubc.ca/~mrg

Erlang Resources

Learn You Some Erlang
http://learnyousomeerlang.com

An on-line book that gives a very good introduction to Erlang. It
has great answers to the “Why is Erlang this way?” kinds of
questions, and it gives realistic assessments of both the strengths
and limitations of Erlang.
Erlang Examples:
http://www.ugrad.cs.ubc.ca/˜cs418/2012-1/lecture/09-08.pdf

My lecture notes that walk through the main features of Erlang
with examples for each. Try it with an Erlang interpretter running in
another window so you can try the examples and make up your
own as you go. This will cover everything you’ll need to make it
through all (or most) of what we’ll do in class, but it doesn’t explain
how to think in Erlang as well as “Learn You Some Erlang” or
Armstrong’s Erlang book (next slide).

Mark Greenstreet Parallel Computation CpSc 418 – Jan. 4, 2016 42 / 40

http://learnyousomeerlang.com
http://www.ugrad.cs.ubc.ca/~cs418/2012-1/lecture/09-08.pdf
http://www.cs.ubc.ca/~mrg

More Erlang Resources
The erlang.org tutorial
http://www.erlang.org/doc/getting_started/users_guide.html

Somewhere between my “Erlang Examples” and “Learn You
Some Erlang.”
Erlang Language Manual
http://www.erlang.org/doc/reference_manual/users_guide.html

My go-to place when looking up details of Erlang operators, etc.
On-line API documentation:
http://www.erlang.org/erldoc.
The book: Programming Erlang: Software for a Concurrent World,
Joe Armstrong, 2007,
http://pragprog.com/book/jaerlang/programming-erlang

Very well written, with lots of great examples. More than you’ll
need for this class, but great if you find yourself using Erlang for a
big project.
More resources listed at http://www.erlang.org/doc.html.

Mark Greenstreet Parallel Computation CpSc 418 – Jan. 4, 2016 43 / 40

http://www.erlang.org/doc/getting_started/users_guide.html
http://www.erlang.org/doc/reference_manual/users_guide.html
http://www.erlang.org/erldoc
http://pragprog.com/book/jaerlang/programming-erlang
http://www.erlang.org/doc.html
http://www.cs.ubc.ca/~mrg

Getting Erlang

You can run Erlang by giving the command erl on any
departmental machine. For example:
I Linux: bowen, thetis, lin01, . . . , lin25, . . . ,

all machines above are .ugrad.cs.ubc.ca, e.g.
bowen.ugrad.cs.ubc.ca, etc.
Or, download it for your own computer.
See http://www.erlang.org/download.html

Or
https://www.erlang-solutions.com/resources/download.html,
includes a .dmg for OSX. ,

Mark Greenstreet Parallel Computation CpSc 418 – Jan. 4, 2016 44 / 40

http://www.erlang.org/download.html
https://www.erlang-solutions.com/resources/download.html
http://www.cs.ubc.ca/~mrg

Starting Erlang

Start the Erlang interpretter.
theis % erl
Erlang/OTP 18 [erts-7.0] [source] ...

Eshell V7.0 (abort with ∧G)

1> 2+3.
5
2>

The Erlang interpreter evaluates expressions that you type.
Expressions end with a “.” (period).

Mark Greenstreet Parallel Computation CpSc 418 – Jan. 4, 2016 45 / 40

http://www.cs.ubc.ca/~mrg

Bibliography
Krste Asanovic, Ras Bodik, et al.
The landscape of parallel computing research: A view from Berkeley.
Technical Report UCB/EECS-2006-183, Electrical Engineering and
Computer Science Department, University of California, Berkeley,
December 2006.
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/

EECS-2006-183.pdf.

Microprocessor quick reference guide.
http://www.intel.com/pressroom/kits/quickrefyr.htm,
June 2013.
accessed 29 August 2013.

List of CPU power dissipation.
http://en.wikipedia.org/wiki/List_of_CPU_power_dissipation,
April 2011.
accessed 26 July 2011.

Mark Greenstreet Parallel Computation CpSc 418 – Jan. 4, 2016 46 / 40

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf
http://www.intel.com/pressroom/kits/quickrefyr.htm
http://en.wikipedia.org/wiki/List_of_CPU_power_dissipation
http://www.cs.ubc.ca/~mrg

Table Of Contents (1/2)
Motivation
Course Overview
I Topics

2 Computer Architecture
2 Performance Analysis
2 Algorithms
2 Languages, Paradigms, and Frameworks

I Syllabus
I Course Administration – who’s who
I The Textbook(s)
I Grades

2 Homework
2 Midterm and Final Exams
2 Mini-Assignments
2 Bug Bounties

I Plagiarism Policy
I Learning Objectives

Mark Greenstreet Parallel Computation CpSc 418 – Jan. 4, 2016 47 / 40

http://www.cs.ubc.ca/~mrg

Table Of Contents (2/2)
Our First Parallel Program
I Introduction to Erlang
I The Count 3s Example

2 Figure illustrating the parallel count3s
2 The Root Process
2 Spawning Worker Processes
2 Telling the Workers to ’go’
2 Computing the final sum
2 Code for the worker processes
2 Running the code

The course waiting list
Preview of the next two weeks
Review of this lecture
Supplementary Material
I Erlang Resources
I Bibliography
I Table of Contents

Mark Greenstreet Parallel Computation CpSc 418 – Jan. 4, 2016 48 / 40

http://www.cs.ubc.ca/~mrg

