
CpSc 418 Homework 2 Solution Set

1. Getting there faster (15 points + 5 Extra Credit)
Solution in hw2.erl.

2. Run-Length Encoding (10 points)
Solution in hw2.erl.

3. Longest Run (20 points)
Solution in hw2.erl.

4. Sequence Matching (40 points)

(a) (5 points) Write a sequential function,

best match(L1, L2) -> {MatchCount, Alignment}

that computes MatchCount and Alignment as described above.

Solution in hw2.erl.

(b) (10 points) What is the run-time for your implementation of best match in terms of N1 = length(L1) and
N2 = length(L2). Derive and justify a big-O formula. Measure the run-time of your implementation using
the function time it:t in the class Erlang library (i.e. get averages and standard deviation over at least 20 runs
for each data point). Compare your empirical measurements with your analytical formula.

Solution: My solution from part (a) works by computing the match for every possible alignment of L1 and L2.
There are |L1| + |L2| - 1 such possible alignments, and each requires O(|L1|) work to count the number
of matching positions. This gives a sequential runtime that is O(|L1|(|L1|+ |L2|)). This is an acceptable answer.
With some more care, we can show a tighter bound ofO(|L1||L2|). First, I’ll note that the runtime is proportional
to the number of positions at which comparisons are performed. This is just the sum of the amount for each
alignment. First, consider the case when |L1| ≤ |L2|, Let k denote the alignment. we get:

If 1− |L1| < k < 0, then |L1| and |L2| overlap in |L1|+ k positions. The total number of comparisons for all
|L1| − 1 such alignments is ∑1−|L1|

k=−1 |L1|+ k

=
∑|L1|−1

j=1 j

= 1
2 |L1|(|L1| − 1)

If 0 ≤ k ≤ |L2| − |L1|, then |L1| and |L2| overlap in |L1| locations , and there are |L2| − |L1| + 1 such
alignments. This results in a total of |L1|(|L2| − |L1|+ 1) comparisons.

If |L2|−|L1|k < |L2|, there are |L1|−1 such alignments, and the total number of comparisons is 1
2 |L1|(|L1|−1)

by an argument

Taking the sum of the number of comparisons for these three cases yields a total of |L1||L2| comparisons for the
complete computation.
When |L1| ≥ |L2| a similar argument applies, and the algorithm performs |L1||L2| comparisons.

∴ the run time for the sequential algorithm is O(|L1||L2|).

Grading note: the solution in hw2.erl performs a tl(L1)with each recursive call of bm neg and a tl(L2)with
each recursive call of bm pos. A slower way to get the same functionality would be to call lists:nthtail(L1,
-Align) or lists:nthtail(L2, Align) in bm neg or bm pos or their equivalents in solution. This in-
creases the run time to O((|L1| + |L2|)2). While such a solution satisfies, Ror any solution, the analysis should
apply to the code submitted.

Now, we’re ready for the empirical measurements. I added a function time bm seq to hw2 test to measure
the run-time for list L1 with lengths for 10 to 100 and list L2 with lengths from 10K to 100K. I ran all tests

1

http://www.ugrad.cs.ubc.ca/~cs418/2015-2/hw/2/sol/hw2.erl
http://www.ugrad.cs.ubc.ca/~cs418/2015-2/hw/2/sol/hw2.erl
http://www.ugrad.cs.ubc.ca/~cs418/2015-2/hw/2/sol/hw2.erl
http://www.ugrad.cs.ubc.ca/~cs418/2015-2/hw/2/sol/hw2.erl
http://www.ugrad.cs.ubc.ca/~cs418/2015-2/hw/2/sol/hw2.erl

on thetis.cs.ubc.ca because I’ve found that it gives some of the most consistent timing measurements of
various machines tht I’ve tried. The function time it:t can be determine how many times to call the function
under test to meet a time bound (default 1.0 seconds) or a specified number of calls. I observed that the reported
time was less than 0.02 seconds (thus 50 or more calls) if |L1||L2| < 1, 600, 000. To satisfy the requirement that
each trial be an average of at least 50 runs, my code calls time it:t with the default (run for one second), if
|L1||L2| < 1, 600, 000, and specifies 50 runs if |L1||L2| is greater than this bound. The table below shows the
timing measurments, times are reported in seconds:

|L2|
|L1| 10K 20K 30K 40K 50K 60K 70K 80K 90K 100K

10 0.0016 0.0032 0.0047 0.0063 0.0079 0.0094 0.0110 0.0126 0.0141 0.0157
20 0.0027 0.0055 0.0081 0.0107 0.0134 0.0161 0.0187 0.0214 0.0242 0.0268
30 0.0038 0.0076 0.0114 0.0151 0.0190 0.0227 0.0264 0.0304 0.0347 0.0380
40 0.0050 0.0098 0.0147 0.0196 0.0245 0.0293 0.0346 0.0392 0.0439 0.0502
50 0.0060 0.0121 0.0182 0.0242 0.0299 0.0367 0.0420 0.0492 0.0539 0.0600
60 0.0074 0.0143 0.0214 0.0289 0.0355 0.0442 0.0501 0.0569 0.0650 0.0708
70 0.0085 0.0165 0.0246 0.0328 0.0410 0.0492 0.0573 0.0655 0.0748 0.0819
80 0.0097 0.0187 0.0284 0.0372 0.0465 0.0567 0.0654 0.0743 0.0835 0.0932
90 0.0106 0.0209 0.0313 0.0417 0.0522 0.0626 0.0738 0.0831 0.0936 0.1040

100 0.0116 0.0238 0.0346 0.0460 0.0577 0.0691 0.0815 0.0919 0.1030 0.1150

From our analysis, we expect these values to be roughly proportional to |L1||L2|, especially for larger values of
|L1| and |L2. To check this, I divide each entry by |L1||L2| for that entry, and defined α to be the average of the
quotients. I obtained a value of α = 12.5ns. See best match seq.m for my Matlab code for the calculations
reported here. I then divided each of the run-times reported above by α|L1||L2| – if the fit were perfect, this
would produce an array where each entry is exactly 1. I got:

|L2|
|L1| 10K 20K 30K 40K 50K 60K 70K 80K 90K 100K

10 1.265 1.261 1.260 1.261 1.259 1.257 1.258 1.261 1.255 1.257
20 1.077 1.107 1.076 1.071 1.073 1.074 1.070 1.071 1.077 1.073
30 1.017 1.016 1.014 1.008 1.014 1.010 1.007 1.014 1.029 1.014
40 0.991 0.982 0.981 0.981 0.981 0.978 0.990 0.981 0.976 1.005
50 0.961 0.969 0.972 0.969 0.958 0.980 0.961 0.985 0.959 0.961
60 0.982 0.954 0.952 0.964 0.948 0.983 0.955 0.949 0.964 0.945
70 0.972 0.944 0.938 0.938 0.938 0.938 0.936 0.937 0.951 0.937
80 0.972 0.936 0.948 0.931 0.931 0.946 0.935 0.930 0.929 0.933
90 0.943 0.930 0.928 0.928 0.929 0.928 0.938 0.924 0.925 0.925

100 0.929 0.953 0.924 0.921 0.924 0.922 0.932 0.920 0.916 0.921

The values are all within [0.921, 1.265], i.e. an “error” bounded by +27% and −8%. Not bad. It’s reasonable to
guess that the reason that we don’t get an exact fit is that we’re doing asymptotic analysis which ignores lots of
details to let us focus on the big picture. In particular, we’re ignoring lower-order terms, such as functions where
the number of calls is |L1| or |L2|. Just for fun, I did a least-squares best fit for the model:

t(n1, n2) = α0 + α1n1 + α2n2 + α12n1n2

where n1 = |L1| and n2 = |L2. This produced α0 = −148.7µs, α1 = 4.9µs, α2 = 51.22 × 10−8ns, and
α12 = 10.98ns. I then divided the measured run-times by t(n1, n2) according to these value for the αs. The
results are:

|L2|
|L1| 10K 20K 30K 40K 50K 60K 70K 80K 90K 100K

10 1.046 1.010 0.998 0.994 0.989 0.985 0.985 0.986 0.980 0.981
20 1.012 1.031 0.998 0.993 0.994 0.994 0.989 0.990 0.995 0.992
30 1.002 1.000 0.999 0.992 0.999 0.994 0.991 0.999 1.013 0.999
40 1.000 0.996 0.996 0.997 0.997 0.994 1.007 0.998 0.994 1.023
50 0.984 1.000 1.006 1.004 0.993 1.017 0.998 1.023 0.996 0.998
60 1.016 0.997 0.998 1.013 0.996 1.034 1.005 0.999 1.015 0.995
70 1.013 0.995 0.993 0.995 0.996 0.997 0.995 0.996 1.011 0.997
80 1.018 0.993 1.010 0.994 0.995 1.012 1.002 0.996 0.995 1.000
90 0.992 0.992 0.995 0.996 0.999 0.999 1.011 0.996 0.998 0.998

100 0.980 1.021 0.994 0.994 0.999 0.997 1.009 0.996 0.993 0.998

2

http://www.ugrad.cs.ubc.ca/~cs418/2015-2/hw/2/sol/best_match_seq.m

|L1|*|L2| ×106
0 2 4 6 8 10

Sp
ee
d-
U
p

0

5

10

15

20

25
Speed-up for Best Match

P = 256
P = 128
P = 64
P = 32
P = 16
P = 8
P = 4
P = 2

Figure 1: Speed-Up for bm par as a function of |L1| · |L2| and P

In this case, the error is bounded between +4.7% and −2.1%, and for 74% of the test cases, the error is less than
1%. I’m happy with that.

(c) Parallel Best Match (15 points)
Solution in hw2.erl.

(d) Measure the speed-up (10 points)
I added functions time bm par and time bm seq to hw2 test. They are similar to the functions for mea-
suring timings for the sequential version as described above. I ran them on thetis which has 32 cores, and each
core is two-way multi-threaded. I ran the same sizes of L1 and L2 as for the sequential case, with trials with P
(the number of processors) set to each power of 2 from 2 through 256. Figure 1 shows the speed-ups as a function
of |L1| · |L2|.
The minimum speed-up for these cases was 1.6; so, I ran some more trials with smaller values for |L1| and |L2|.
I plotted speed-up as a function of |L1| · |L2| with 2, 4, and 8 processors, |L1| ∈ {10, 20, 30, 50, 100}, and |L2|
from 100 to 1000 in steps of 100. Figures 2 and 3 show the results. In each case, it seems that the speed-up crosses
1, and thus the parallel version is faster than the sequential one, when |L1| · |L2| is between 5000 and 8000. I was
surprised to see that the two processor case required the largest problem size to break even. I don’t have a good
explanation for that. I’ll just note that the parallel version is faster when the product of the list lengths is greater
than 8000.

3

http://www.ugrad.cs.ubc.ca/~cs418/2015-2/hw/2/sol/hw2.erl

|L1|*|L2| ×104
0 1 2 3 4 5

Sp
ee
d-
U
p

0

0.5

1

1.5

2

2.5
Speed-up for Best Match

|W=2|
|W=4|
|W=8|

Figure 2: Speed-Up for bm par as a function of |L1| · |L2| and P

|L1|*|L2|
3000 4000 5000 6000 7000 8000 9000 10000

Sp
ee
d-
U
p

0.9

0.95

1

1.05

1.1

Speed-up for Best Match
|W=2|
|W=4|
|W=8|

Figure 3: Speed-Up for bm par as a function of |L1| · |L2| and P

4

