Please submit your solution using the handin program. Submit the your solution as cs418 hw2
Your submission should consist of the following two files:
hw2.erl - Erlang source (ASCII text).
hw2 .txt or hw2.pdf - plain, ASCII text or PDF.
The first file, hw2.erl, will be your solution to the programming part of the assignment.
Unless otherwise stated, you may use any functions that you like from the Erlang library, for example, functions from the lists module.
The second file, hw2.txt or hw2.pdf should give your solutions to the written parts of the assignment.
No other file formats will be accepted.
A code template is available at hw2.erl.

1. Getting there faster ($\mathbf{1 5}$ points $\mathbf{+} \mathbf{5}$ Extra Credit)

An intrepid traveler starts out on a journey where the traveler's initial position is described by $\{X, Y, \quad$ Dir $\}$, where X and Y are the traveler's initial x and y coordinates; and Dir is the direction that the traveler is facing (in degrees counterclockwise from the x-axis). The journey is described by a list of moves, where each move has the form $\{$ Turn, Dist $\}$. This tells the traveler to turn Turn degrees counter-clockwise, and then go forward Dist units of distance. The function move_pos (InitPos, MoveList) in the code template hw2.erl returns the position and direction of the traveler after completing the moves specified by MoveList. Your task, of course, is to do this in parallel.

(a) (15 points)

Use wtree: scan to write a function move_par (W, InitPos, MoveKey, PosKey) where W is a worker tree; InitPos is the initial position of the traveler; MoveKey is the key for a list distributed across the workers describing the journey describing the sequence of moves the traveler is to make; and PosKey is the key for storing a list (distributed across the workers) that gives the position of the traveler after each move. move_par (. . .) should return the position and orientation of the traveler at the end of the journey (just like hw2:mov_pos), but the computation is done in parallel, and the intermediate positions are stored in the list associated with PosKey.
(b) (5 points, extra credit)

Erlang has some graphics capabilities, see the wx package. Use wx to draw the path of the traveler.

2. Run-Length Encoding ($\mathbf{1 0}$ points)

This problem is purely sequential. It's really just a warm-up for the next question. Run-length encoding (RLE) is a simplistic form of data compression. Given a list, RLE replaces each sequence of consecutive, identical elements with a tuple that consists of the value of the element and the number of times it is repeated. For example,

$$
\begin{gathered}
\text { rle }([a, b, b, b, c, a, a, a, a, z])-> \\
\quad[\{a, 1\},\{b, 3\},\{c, 1\},\{a, 4\},\{z, 1\}] .
\end{gathered}
$$

Write a function, rle (List) that returns the run-length encoded version of List.

3. Longest Run (20 points)

Given a list, L, and a value, V, longest_run (L, V) is the tuple $\{L e n, P o s\}$ where Len of the longest sequence of consecutive $V \mathrm{~s}$ in L, and Pos is the position in L of the first element in that sequence. For example,

$$
\text { longest_run }([a, b, b, b, c, a, a, a, a, z], a) \rightarrow\{4,6\} .
$$

Write a parallel version of longest_run (W, Key, V) where W is a worker tree; V is the value we're looking for in the list, and Key is the key for the list (distributed across W, of course).

Hint: I found it helpful to write a helper function, rlep, that's like r le described above, and that also includes the position of the start of each run in the tuples.
4. Sequence Matching (40 points) There are problems in genomics where a researcher has a genetic sequence, S, and they want to find it's closest match in some genome, G. This problem considers a simplified version of such problems.
Let $L 1$ and $L 2$ be lists. We want to find the best amount to shift $L 1$ relative to $L 2$ such that the maximum number of elements in L1 match the corresponding elements in L2. Let Alignment denote this shift, and MatchCount denote the number of matched elements. In the case of ties, we'll take the one with the smallest value for Alignment. Here are some examples:

- L1 $=[1,2,3,4], \mathrm{L} 2=[0,1,1,2,3,5,8]$, then the Alignment $=2$ and MatchCount $=3$ as shown below:

$$
\begin{aligned}
& \mathrm{L} 1=[1,2,3,4] \\
& \mathrm{L} 2=[0,1,1,2,3,5,8]
\end{aligned} \quad \% \mathrm{~L} 1 \text { shifted two places to the right }
$$

- L1 $=[1,2,3,4], \mathrm{L} 2=[1,2,3,5,1,5,2,3,4,5]$, then the Alignment $=0$ and MatchCount $=$ 3 as shown below:

```
\(\mathrm{L} 1=[1,2,3,4] \quad\) L L1 unshifted
\(\mathrm{L} 2=[1,2,3,5,1,5,2,3,4,5]\)
```

- $\mathrm{L} 1=[1,2,4,8], \mathrm{L} 2=[2,4,6,8,10]$, then the Alignment $=-1$ and MatchCount $=2$ as shown below:

```
L1 = [1, 2,4,8] % L1 shifted one place to the left
L2 = [2,4,6,8,10]
```

(a) (5 points) Write a sequential function,

```
best_match(L1, L2) -> {MatchCount, Alignment}
```

that computes MatchCount and Alignment as described above.
(b) ($\mathbf{1 0}$ points) What is the run-time for your implementation of best match in terms of $N_{1}=$ length (L1) and $N_{2}=$ length (L2). Derive and justify a big-O formula. Measure the run-time of your implementation using the function t ime_it : t in the class Erlang library (i.e. get averages and standard deviation over at least 20 runs for each data point). Compare your empirical measurements with your analytical formula.
(c) ($\mathbf{1 5}$ points) Now write a parallel version:

```
best_match_par(W, Key1, Key2) -> {MatchCount, Alignment}
```

where W is a worker tree, and Key 1 and Key 2 are the keys for lists L1 and L2 respectively.
(d) (10 points) Measure the speed-up (or slow-down) of best_match_par compared with best_match. For what list sizes is the parallel implementation advantageous? When is the sequential version faster?

