
CpSc 418 Midterm February 10, 2015

100 points

CpSc 418 Midterm February 10, 2015

Graded out of 100 points (101 points are possible)

Answer question 0, and any three out of questions 1–4. If you write solutions for all four, please indicate which three
you want to have graded. Otherwise, three will be chose arbitrarily.

0. (2 points)

(a) Your name: Mark Greenstreet

(b) Your student number: 00000000
1. Reduce (33 points) Let’s say we have a list of N numbers that is stored on P worker processes. We want to find

the largest perfect square in the list. For example,

largest square([5622, 64, 4214, 4624, 2150, 5583, 1599, 6889, 2095])

is 6889 (i.e. 83*83). Of course, we want to do this is parallel, and we’ll use reduce.

(a) (25 points): Fill-in the blanks to complete the computation of largest square in Figure 1.
(b) (8 points): Consider execution where the four worker processes have the specified lists: stored under key

rawdata:
• Worker 0: [0, 83, 64, 5, 101].
• Worker 1: [17, 23, 164, 125, 111].
• Worker 2: [168, 169, 81, 25, 3].
• Worker 3: [0, 0, 0, 0, 0].

Fill-in the blanks below to describe what happens while computing largest square(W, rawdata)
using the code from Figure 1, and assuming that W is a worker tree consisting of the four processes men-
tioned above. Hint: here’s a list of all the squares less than 200: [0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100,
121, 144, 169, 196].
• Each worker performs its leaf function:

Worker 0: leaf(MyList) returns 64 ;

Worker 1: leaf(MyList) returns none ;

Worker 2: leaf(MyList) returns 169 ;

Worker 3: leaf(MyList) returns 0 ;
• The first round of combines:

Worker 0: computes combine(64, none) to produce 64 ;

Worker 2: computes combine(169, 0) to produce 169 ;
• The final result:

Worker 0: computes combine(64, 169) to produce 169 ;
This is the final result and is returned by largest square.

1

largest square(W, Key) ->
wtree:reduce(W,

fun(ProcState) ->
leaf(wtree:get(ProcState, Key))

end, fun(Left, Right) ->
combine(Left, Right)

end
).

leaf(MyList) ->
Squares = [

X || X <- MyList,
X == square(round(math:sqrt(X)))

],
case Squares of

[] -> none;
-> lists:max(Squares)

end.

combine(none, Right) -> Right ;

combine(Left, none) -> Left ;

combine(Left, Right) -> max(Left, Right) .

square(X) -> X*X .

Figure 1: Code for largest square — filled in

2

2. Performance (33 points) Consider an algorithm that takes time t0N log2N for the best sequential algorithm.
Assume that a parallel version can be done in time(

t0
N

P
log2N

)
+

(
λ+ t0

N

P

)
log2 P

Assume t0 = 10ns and λ = 10µs, where 1ns = 10−9seconds, and 1µs = 10−6seconds.

(a) (5 points): What is the speed-up if N = 216 = 65536, and P = 256?
Show your work on the blank pages at the end or on the back side of a test page, and write your answer
here.
To avoid repeating calculations, I’ll note that tp = (ts/P)+(λ+t0N/P) log2 P , where tp is the exeuction
time for the parallel program, and ts is the sequential execution time. Note: 1ms = 10−3seconds.

ts = 10ns ∗ 216 log2 216
= 10.048ms

tp = (10.048ms/28) +
(
10µms + 10ns 216

28

)
log2 2

8

= 40.96µms + 100.48µms
= 141.44µms

SpeedUp = ts
tp

= 10.048ms
141.44µms = 74.1

(b) (6 points): If P = 256, how large must N be to get a speed-up of at least P/2?
Clearly bigger than 216. Let’s try 217, and if that isn’t enough, 218 should do the job. Calculating as for
part (a), I get:

N ts tp SpeedUp

217 22.3ms 208µms 107
218 47.2ms 346µms 136

N should be 218 = 262, 144 or larger.

(c) (5 points): What is the speed-up if N = 216, P = 256, and λ is reduced to 1µs (keeping t0 = 10ns)?

ts = 10.5ms, tp = 69.4µms, SpeedUp = 151

(d) (5 points): What is the speed-up if N = 220, P = 256, and t0 is reduced to 1ns (keeping λ = 10µs)?

ts = 21.0ms, tp = 195µms SpeedUp = 108

(e) (6 points): Does speed-up increase or decrease with a decrease of λ? Why?
Speed-up increases when λ decreases because the λ term is overhead that only adds to
the parallel execution time and does not affect the sequential time.

(f) (6 points): Does speed-up increase or decrease with a decrease of t0? Why?
Speed-up decreases when t0 decreases because the sequential time is proportional to t0
but the parallel time also includes some overheads that are independent of t0.
Note: While solving this one, I discovered that I setN = 220 here. Because the speed up is lower than that
for N = 218 and t0 = 10ns, you can still make the conclusion that decreasing t0 decreases speed-up. The
take-home message is that speeding up the sequential computation tends to improve performance (both ts
and tp decrease) but lower speed-up.

3

3. Erlang (33 points)

(a) (24 points): Let double(List) return the list obtained by doubling each element of List Consider
the three implementations below (I won’t worry about guards until part b):

double 1([]) -> [];
double 1([Hd | Tl]) -> [2*Hd | double 1(Tl)].

double 2(List) -> double 2(List, []);
double 2([Hd | Tl], Acc) -> double 2(Tl, Acc++[2*Hd]);
double 2([], Acc) -> Acc.

double 3([]) -> [];
double 3([A]) -> [2*A];
double 3(L) ->
{L1, L2} = lists:split(lists:length(L) div 2, L);
double 3(L1) ++ double 3(L2).

Which of these runs in O(N) time? Which in O(N logN) time? and which in O(N2) time? Here,
N denotes the length of the list given as an argument to double. Note: lists:split(N, List)
-> {FirstN, Rest}, where FirstN is the first N elements of List, and List is the rest. You
can assume that lists:split(N, List) runs in time O(N). With each answer, give a one or two
sentence justification(maybe three for the O(NlogN) case). Write your answers below:

O(N): double 1
Why?
double 1 performs O(1) operations (a multiplication and prepending
an element to a list) for each element of its argument list.

O(N logN): double 3
Why?

double 3 is a divide-and-conquer approach. It spends O(N) time to
split the list and concatenate the results of the recursive calls. Each
call reduces the length of the list by half; so, the calls go to a depth of
dlog2Ne. At each level, O(N) work is done in total. This gives the
O(N logN) runtime.
double 3 is a pretty convoluted way of doubling the elements in a list – imho, there’s no reason to
ever do this. OTOH, its runtime is much better than double 2.

O(N2): double 2
Why?

double 2 does O(|Acc|) work for the ++ operation. double 2 is
called with |Acc| taking on values of 0, 1, 2, . . . , N − 1. The total time
is O(N 2).

4

(b) (3 points): Which of the three versions of double from part (a) is tail recursive?
double 2

(c) (6 points): Here’s an Erlang quirk I encountered recently:

1> X = [a | b].
[a|b]
2> is list(X).
true
3> tl(X).
b
4> is list(tl(X)).
false

That’s right – you can have a list whose tail is defined, but whose tail is not a list! We’ll say that L is a
“true list” iff X is a list, and if you take tl(X) enough times, you eventually get []. Write an Erlang
function, is true list(X) that returns true iff X is a true list. For example,

is true list([]) -> true.
is true list([a, b]) -> true.
is true list(lists:seq(1, 1000000000)) -> true.
is true list([a | b]) -> false.

Write your solution below:
is true list([]) -> true; % just like in the examples above
is true list([Hd | Tl]) -> is true list(Tl); % so far, so good
is true list() -> false. % whatever is, it’s not a list

5

4. (33 points) Pot Pourri

(a) (6 points) The best sequential implementation of a program takes 4 hours to run. A parallel version runs

in 20 minutes using 16 processors. What is the speed-up?

SpeedUp =
ts
tp

=
4hours

20minutes
=

240minutes

20minutes
= 12

(b) (Example: 0 points) Consider the code below for the partition step of quicksort:

partition(A, lo, hi) {
pivot = A[hi-1];
i = lo;
for(int j = lo; j < hi-1; j++) {

if(A[j] <= pivot) {
tmp = A[i]; A[i] = A[j]; A[j] = tmp;
i++;

}
}
A[hi-1] = A[i];
A[i] = pivot;

}

Describe a write-after-read dependency in the partition function.
Answer: the write to A[i] in the statement ‘A[i] = A[j]’ must be performed after the read of A[i]
in the preceding statement, ‘tmp = A[i]’. Otherwise, the read will get the wrong value.

(c) (6 points) Describe a read-after-write dependency in the partition function.
The read of j in ‘if(A[j] <- pivot)’ must be performed after write
of j in the j++ operation in the for-statement.

(d) (6 points) Describe a control-dependency in the partition function.
The branch for the if-statement must be performed before the operations
that swap A[i] and A[j].

(e) (6 points) What is “super-linear speed-up”? Describe one typical cause.
Super-linear speed-up refers to a situation where a parallel program with
P processes runs in less time than the time of the sequential version di-
vided by P . This can occur because the parallel machine has more fast
memory (e.g. registers, cache, DRAM) in total than a single processor,
and can have a higher fraction of its data references going to faster mem-
ory. Another cause is multi-threading where several threads can make
better use of the resource of a super-scalar processor than a single thread
can.

6

(f) (6 points) How does a super-scalar machine determine if the register-operands for an instruction are avail-
able so the instruction can execute?
The result register for an instruction is tagged as “busy” when it is allo-
cated during the renaming process. It will be tagged as “ready” when the
instruction has updated the register with its result. If subsequent instruc-
tion needs the value from that register, that subsequent instruction will
be blocked from execution until all registers that it needs are ready (or
“committed”).

(g) (3 points) Who invented “Amdahl’s Law”?

Gene Amdahl, in 1967.
Note: “Amdahl” is a sufficient answer.

7

https://en.wikipedia.org/wiki/Gene_Amdahl
https://en.wikipedia.org/wiki/1967

