Peterson’s Mutual Exclusion Algorithm

Mark Greenstreet

CpSc 418 – Nov. 14, 2013
This is a draft version of the slides.

- Mutual Exclusion
- Peterson’s algorithm
- Proving Peterson’s algorithm correct
- Mutual Exclusion in the real world.
Mutual Exclusion: Usage

- A mutual exclusion algorithm provides two operations:
 - `lock(threadId)`: the thread specified by `threadId` acquires the lock.
 - `unlock(threadId)`: the thread specified by `threadId` releases the lock.

- Usage:
 - Initially, no thread has the lock.
 - If a thread does not have the lock, it may call `lock(threadId)`.
 - When `lock(threadId)` returns, the thread specified by `threadId` has the lock.
 - If a thread has the lock it must eventually call `unlock(threadId)`.
 - When `unlock(threadId)` returns, the thread specified by `threadId` no longer has the lock.
 - It is an error:
 - To call `lock(threadId)` if the thread already has the lock.
 - To call `unlock(threadId)` if the thread does not have the lock.
Mutual Exclusion: Guarantees

- A correct mutual exclusion algorithm guarantees:
 - Mutual exclusion: at most one thread has the lock at any time.
 - No Deadlock: if one or more threads have requested the lock, some thread will eventually receive the lock.
 - No Starvation: if a thread requests the lock, it will eventually acquire it.

- A few notes:
 - Even if the mutual-exclusion algorithm is deadlock free, a program may deadlock, e.g. cycles of locks.
 - Freedom from starvation is nice, but there are practical algorithms that don’t guarantee it on the basis that starvation is highly unlikely and not worth adding complexity to the implementation.
 - Some algorithms provide other features or guarantees:
 - E.g. “first-come, first-served”.
 - Offer a “nacking” lock – instead of blocking, the lock function just returns `true` to indicate the lock was granted, and `false` to indicate that some other thread has/had the lock.
Peterson’s Mutual Exclusion Algorithm

1: % shared variables:
3: int victim = 0;
4:
5: lock(myId) {
6: int otherId = 1 - myId; % know your neighbour
7: flag[myId] = true; % express intent to lock
8: victim = myId; % you go first, please
9: while(flag[otherId] && (victim == myId)); % spin
10: }
11:
12: unlock(myId) {
13: flag[myId] = false;
14: }
The Peterson Principle

- When a thread tries to acquire the lock, it gives priority to the other thread before spinning.
- If both threads try to acquire the lock at roughly the same time, then the last one to set \textit{victim} defers to the other thread.
- Consider a few executions:
 - Thread 0 acquires the lock without contention; then thread 1 requests the lock; then thread 0 releases the lock.
 - Thread 0 sets its flag; thread 1 sets its flag; thread 0 proceeds to spin; thread 1 proceeds to spin. Who gets the lock?
 - Think of your own example.
Proving Peterson Correct: Thread “states”

- Each thread cycles through the following four states in the order below:
 - **Idle**: Both threads are initially idle. Furthermore, they return to the idle state at line 14 of `unlock`. The idle state include the non-critical section code of the thread. The idle state continues to line 7 of `lock`.
 - **Entering**: Line 8 of `lock`.
 - **Spinning**: Line 9 of `lock`.
 - **Critical**: Starting at line 10 of `lock`, the critical section for the thread, and continuing to line 13 of `unlock`.

- I’ll write `state(threadId)` to indicate the current “state” of the given thread.

- Note: when we say that a thread is at line L, that means that execution has reached line L, but no actions for line L have been performed.
Why does Peterson’s algorithm guarantee mutual exclusion?

- What does $flag[id]$ tell us?
 - Hint: think about the relation between $flag[id]$, and $state(id)$.
- What is the role of $victim$?
 - What if one thread is spinning and the other is in its critical region?
 - What if both threads are spinning?
Proving Peterson Correct: Mutual Exclusion – the proof

- Write the previous observations as an invariant:
- Show that each operation of the algorithm preserves the invariant.
- Show that the invariant guarantees mutual exclusion
Both threads can proceed to the Spin state without being blocked by the other.

Need to show that if one or both threads are spinning, then eventually, some thread enters its critical region.

Why must some thread eventually be in its critical region?

1. Assume thread 0 is spinning.

2. Think about what happens for the various states that thread 1 could be in.
Peterson is Deadlock Free – the proof

Assume thread 0 is spinning:

- case thread 1 is idle:

- case thread 1 is entering:

- case thread 1 is spinning:

- case thread 1 is critical:
If thread 0 is not idle, what is the longest sequence of state transitions by threads 0 and 1 before thread 0 enters its critical region?

Construct a function based on the states of threads 0 and 1 and the value of \texttt{victim} that gives the maximum number of state transitions remaining until thread 0 will enter its critical region.

Why must each step be taken?

Note 1: I would never ask you to prove starvation freedom on anything for credit in this class.

Note 2: This is why tools like PReach are great: they automate all of these proofs!
Peterson’s algorithm generalizes to any number of threads.
The algorithm is called a “filter lock”.
One flag variable per thread,
and an array of $N - 1$ victim variables.
Mutual exclusion with more than two threads

Why so many variables:

▶ The Bakery algorithm also uses N shared variables for N-way mutual exclusion.
▶ Can show that $N - 1$ variables are required to guarantee mutual-exclusion if the only atomic operations are individual reads and writes.
▶ This is why real processors have “compare-and-set” (or similar) operations.
Some Performance Experiments (I hope)
The rest of the course

- Nov. 19: Mesh sorting, and distributed Erlang
- Nov. 21: GPUs
- Nov. 26: Map Reduce
- Nov. 28: The future, or my research, or course review, or . . .