CPSC 414
Computer Graphics

Instructor:
Michiel van de Panne

What This Course Is About

Topics covered

- basics of interactive rendering
 - *modeling, geometric transformations*
 - *projections, hidden surface removal*
 - *lighting, texture mapping*
 - *input and output hardware, human perception*
- as time allows
 - *shadows, current hardware*
 - *ray-tracing, global illumination, animation*
 - ...
What This Course is NOT About

Topics NOT covered:

- Artistic and design issues
- Usage of commercial software packages
- Other graphics courses
 - CPSC 424: Geometric Modeling
 - CPSC 448: Video Game Programming
 - CPSC 526: Animation
 - CPSC 514: Image-based Modeling and Rendering
 - CPSC 533: Topics in Information Visualization

Course Organization

Programming assignments:

- C++, Windows or Linux
- OpenGL graphics library / GLUT for user interface

Collaboration:

- Individual solutions unless stated otherwise
Course Organization

Up-to-date information:
- http://www.ugrad.cs.ubc.ca/~cs414
- WebCT (follow link from course home page)
 - Bulletin board
 - REQUIRES INTERCHANGE ACCOUNT!

3D Graphics: Applications

- simulation
 - flight, driving, surgical, ...
- arts and entertainment
 - film and video
 - games
 - simulator rides
- design
 - product, building, mechanical
- scientific visualization
 - weather, MRI, fluid flow, ...
- information visualization
 - network structure, data mining, ...
3D Graphics: History

• 2000 BC: Orthographic projection
• 1600s:
 – coordinate systems (Descartes)
 – optics (Huygens)
 – calculus, physics, optics (Newton)
• 1897: oscilloscope (Braun)
• 1950-70: vector display computers
• 1966: first raster display
• 1993: 500k tri/s, texmap @ 60Hz for $150,000
• 1995: feature length CG films
• 2002: 100M tri/s for $400

Images...
Images...

Images...
Images...

Images...
Graphics: State of the Art

• Displays:
 – IBM: 2560x2048 pixels, 3km wiring, 200ppi
 – electronic paper
 – 3D printers

• Input:
 – Z-cam, Triclops
 – motion capture

• Modelling: TEDDY

• Rendering: Video Textures

• Animation: Ski Stunt Simulator

• Animation: Fracture Simulation

Projective Rendering Pipeline

- project vertices
- scan convert
- eye
- image plane
Projective Rendering Pipeline

- **OCS** - object coordinate system
- **WCS** - world coordinate system
- **VCS** - viewing coordinate system
- **CCS** - clipping coordinate system
- **NDCS** - normalized device coordinate system
- **DCS** - device coordinate system

```
void glVertex3f(float x, float y, float z)
void glTranslatef(float x, float y, float z)
void glRotatef(float angle, float x, float y, float z)
void glFrustum(...)
void glutInitWindowSize(int x, int y)
```

Coming Up…

Thursday, January 9:

- math review:
 - points, vectors, coordinate frames
 - basis vectors, basis functions
 - dot product, cross product
- introduction to geometric transformations