1. (1 pt) Write down the 4x4 matrix for rotating an object by 90° around the z axis.

\[
\begin{pmatrix}
\cos 90° & -\sin 90° & 0 & 0 \\
\sin 90° & \cos 90° & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix} =
\begin{pmatrix}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\]

2. (2 pts) Describe in words what this matrix does (be specific about the order of operations)

\[
\begin{pmatrix}
.707 & 0 & .707 & 0 \\
0 & 2 & 0 & 0 \\
-.707 & 0 & .707 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix} =
\begin{pmatrix}
.707 & 0 & .707 & 0 \\
0 & 1 & 0 & 0 \\
-.707 & 0 & .707 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\]

OR \[
\begin{pmatrix}
1 & 2 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\]

scale in y by 2, then rotate (45°, 90°)

rotate (45°, 90°), then scale in y by 2

3. (1 pt) Draw a picture of the object below transformed by the above matrix

![Transformed Object Diagram]

4. (1 pt) Give sequence of OpenGL commands necessary to implement the above transformation.

\[
glRotatef(45, 0, 1, 0) \\
glScalef(1, 2, 1)
\]
5. (2 pts) Draw houseA and houseB, transformed by the appropriate OpenGL commands. The untransformed house is below.

```c
glIdentity();
glTranslatef(1, 0, 0);
glRotate(90, 0, 0, 1);
glPushMatrix();
glTranslatef(0, 2, 0);
drawHouseA();
glPopMatrix();
glTranslatef(-1, 0, 0);
drawHouseB();
```

6. (1 pt) Give the series of affine transformations (assuming postmultiplying) needed to create the picture below, assuming the house started from the position shown in the above questions.

```c
glTranslatef(3, 2, 0)
glRotate(45, 0, 0, 1)
glScale(\sqrt{2}, \sqrt{2}, 1)
```
7. (1 pt) The point coordinate \(P \), as shown below to the right, can be thought of as \(P = 1*i + 3*j \), where \(i \) and \(j \) are basis vectors of unit length along the \(x \) and \(y \) axes, respectively. In effect, a coordinate system is defined by the location of its origin, and its basis vectors. Describe the point \(P \) in terms of the 3 other coordinate systems given below.

\[
\begin{align*}
P &= -2A_i + 2A_j \\
P &= -1B_i + 1.5B_j \\
P &= 0.5C_i + 1.25C_j - 1/2
\end{align*}
\]

\[
\begin{align*}
\frac{1}{2} &= a(0.5) + b(-1) + c(2) \\
1 &= 0.5a - b + 2 \\
3 &= -a - 2b + 6 \\
0.5a - b &= -1 \\
a - 2b &= -3 \\
-a - 2b &= -3 \\
2a &= 1 \\
a &= \frac{1}{2} \\
b &= \frac{5}{2} \\
l &= -\frac{1}{2} - 2b = -3
\end{align*}
\]

8. (1 pt) Normalize the homogenous point \((2,4,6,2)\).

\[
(1,2,3,1) = \left(\frac{2}{2}, \frac{4}{2}, \frac{6}{2}, \frac{2}{2} \right)
\]

9. (1 pt) Draw the cavalier projection of a box of size \(x=4 \), \(y=2 \), \(z=6 \). Use a \(20^\circ \) projection (that is, the \(z \) axis in the scene should make a \(20^\circ \) angle with the \(x \) axis in the projection). The drawing doesn’t have to be exactly to scale, but you must label the point locations.
10. (2 pts) Derive a 4x4 matrix that when applied to the point \((x, y, z, 1)^T\) would result in the projection in the picture below. Show your work.

\[
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
x \\
y \\
z \\
d
\end{pmatrix} =
\begin{pmatrix}
x' \\
y' \\
\frac{z}{d} \\
1
\end{pmatrix}
\rightarrow
\begin{pmatrix}
\frac{x'd}{z} \\
\frac{y'd}{z} \\
\frac{z}{d} \\
1
\end{pmatrix} =
\begin{pmatrix}
x' \\
y' \\
1 \\
1
\end{pmatrix}
\]

11. (1 pt) Sketch a side view (yz plane) of the perspective view frustum, in VCS, that is specified by the following parameters:
accer = 3, top = 2, right = 1, far = 5, bot = -1, left = -1

12. (1 pt) Write out the OpenGL perspective transformation matrix for the above configuration.

\[
\begin{pmatrix}
\frac{6}{2} & 0 & 0 & 0 \\
0 & \frac{6}{3} & 1 & 0 \\
0 & 0 & -\frac{8}{2} & -3c \\
0 & 0 & -1 & 0
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 2 & 1 & 0 \\
0 & 0 & -4 & -16 \\
0 & 0 & -1 & 0
\end{pmatrix}
\]
13. (1 pt) Briefly describe how to implement per-object picking using the back buffer

STORE A UNIQUE COLOR FOR EACH OBJECT (PICKABLE) IN SCENE IN A TABLE. RENDER SCENE TO BACK BUFFER WITH SHADING TURNED OFF. READ BACK PIXEL AT CURSOR LOCATION AND CHECK AGAINST TABLE.

14. (1 pt) A point in a triangle can be expressed using barycentric coordinates as follows: $P = \alpha P_1 + \beta P_2 + \gamma P_3$, where $0 \leq \alpha, \beta, \gamma \leq 1$ and $-\alpha + \beta + \gamma = 1$. Draw the line corresponding to $\alpha = .6$ on the following triangle which sits in the xy-plane.

![Triangle with barycentric coordinates](image)

15. (1 pt) Briefly describe how to use parity when scan converting a general polygon.

Parity Test:

SCAN ALONG EACH SCANLINE. ON ODD NUMBER OF EDGE CROSSINGS, RASTERIZE PIXELS. ON EVEN EDGE CROSSINGS STOP RASTERIZING.

Special Cases:

(i) COUNT CONCAVE (SPLIT) VERTICES TWICE (E.G., X)

(ii) DON'T RASTERIZE BOTTOM HORIZONTAL EDGE.
In the problems below, use the Phong illumination model given by
\[I = I_a k_a + I_d l_d(N \cdot L) + I_v l_v(R \cdot V)^n \]
with parameters \(I_a = .8, I_d = 1.0, k_a = .2, k_d = .9, k_v = .5, n = 30 \).

\[l_p = \left(-\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}, 0 \right) \]
\[L = (1,2,0) \quad (5,2,0) \quad E \]
\[l_c = \left(-\frac{2}{\sqrt{5}}, \frac{2}{\sqrt{5}}, 0 \right) \]
\[n_A = \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0 \right) \]
\[u_A = \left(\frac{3}{\sqrt{5}}, \frac{2}{\sqrt{5}}, 0 \right) \]
\[n_c = \left(\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}, 0 \right) \]
\[u_c = \left(\frac{2}{\sqrt{5}}, \frac{2}{\sqrt{5}}, 0 \right) \]

16. (2 pts) Give the specular component of B, using the Gouraud shading model.
\[R_A = 2 \times n_A \times (n_A \cdot l_A) - l_A = \left(-\frac{2}{\sqrt{5}}, \frac{2}{\sqrt{5}}, 0 \right) \qquad \because R_A \cdot l_A = 0 \]
\[\therefore \text{SPECULAR}_A = k_A \times l_A \times (R_A \cdot l_A)^n = 0 \]
\[R_c = 2 \times n_c \times (n_c \cdot l_c) - l_c = -l_c \left[n_c \cdot l_c = 1 \right] \qquad \because R_c \cdot l_c = 0 \]
\[\therefore \text{SPECULAR}_C = k_A \times l_A \times (R_c \cdot l_c)^n = 0 \]
\[\therefore \text{SPECULAR}_B = \text{SPECULAR}_A + \text{SPECULAR}_C = 0 \]

17. (2 pts) Give the specular component of B, using the Phong shading model.
\[n_B = \frac{n_A + n_c}{|n_A + n_c|} = (0, 1, 0) \]
\[l_B = \left(-\frac{2}{\sqrt{5}}, \frac{2}{\sqrt{5}}, 0 \right) \]
\[u_B = \left(\frac{2}{\sqrt{5}}, \frac{2}{\sqrt{5}}, 0 \right) \]
\[R_B = 2 \times n_B \times (n_B \cdot l_B) - l_B = \left(\frac{2}{\sqrt{5}}, \frac{2}{\sqrt{5}}, 0 \right) \]
\[\therefore R_B \cdot u_B = \left(\frac{2}{\sqrt{5}} + \frac{2}{\sqrt{5}} + 0 \right) = 1.0 \]
\[\therefore \text{SPECULAR}_B = 0.5 \times 1.0 \times 1.0 = 0.5 \]