Texture Mapping

CPSC 414

The Rendering Pipeline

Geometry Database → Model/View Transform. → Lighting → Perspective Transform. → Clipping

Geometry Processing

Scan Conversion → Texturing → Depth Test → Blending → Frame-buffer

Rasterization

Fragment Processing
Texture Mapping

Summary
- textures, texture maps
- “texels”: texture elements
- images attached to geometry
- adds visual detail, substitute for geometric detail
Texture Mapping

Texture Coordinates
• generation at vertices
 – specified by programmer or artist
 \[\text{glTexCoord2f}(s, t) \]
 \[\text{glVertexf}(x, y, z) \]
 – generate as a function of vertex coords
 \[\text{glTexGeni}(), \text{glTexGenfv}() \]
 \[s = a*x + b*y + c*z + d*h \]
• interpolated across triangle (like R,G,B,Z)
 (well, not quite...)

Texture Mapping

Texture Coordinate Interpolation
• perspective foreshortening problem
• also problematic for colour interpolation, etc.
Texture Coordinate Interpolation

Perspective Correct Interpolation

- α, β, γ: Barycentric coordinates of a point P in a triangle
- s_0, s_1, s_2: texture coordinates
- w_0, w_1, w_2: homog coordinates

\[
s = \frac{\alpha \cdot s_0 / w_0 + \beta \cdot s_1 / w_1 + \gamma \cdot s_2 / w_2}{\alpha / w_0 + \beta / w_1 + \gamma / w_2}
\]

Texture Mapping

Texture Coordinate Interpolation

\[
P' = \begin{bmatrix} E & 0 & A & 0 \\ 0 & F & B & 0 \\ 0 & 0 & C & D \\ 0 & 0 & -1 & 0 \end{bmatrix} P
\]
Texture Mapping

Textures of other dimensions

• 1D: represent isovalues
 – *e.g.:* contour lines, temperature, ...

 \[
 \text{\texttt{glTexCoord1f}}(s)
 \]

• 3D: solid textures
 – *e.g.:* wood grain, medical data, ...

 \[
 \text{\texttt{glTexCoord3f}}(s, t, r)
 \]

• 4D: 3D + time, projecting textures

 \[
 \text{\texttt{glTexCoord3f}}(s, t, r, q)
 \]

Texture Coordinate Transformations

Motivation:

• Change scale, orientation of texture on an object

Approach:

• *texture matrix stack*
• 4x4 matrix stack
• transforms specified (or generated) tex coords

 \[
 \text{\texttt{glMatrixMode}}(\text{\texttt{GL_TEXTURE}}) ;
 \]

 \[
 \text{\texttt{glLoadIdentity}}() ;
 \]

 ...

© Wolfgang Heidrich and Michiel van de Panne
Texture Coordinate Transformations

Example:

\[
\begin{align*}
&\text{glScalef}(4.0, 4.0, ?); \\
&\text{\begin{tabular}{ll}
(0,0) & (4,0) \\
(1,0) & (4,4) \\
(0,1) & (0,4) \\
(1,1) & \end{tabular}}
\end{align*}
\]

Projective Transformations

- can do projective transformations
- tex coord \((s,t,r,q)\) : \(q \leftrightarrow h\)
Texture Coordinate Transformations

Example:

Texture Lookup

Issue:
• What happens to fragments with s or t outside the interval $[0...1]$?

Multiple choices:
• Take only fractional part of texture coordinates
 – Cyclic repetition of texture to tile whole surface
 \[
 \text{glTexParameteri}(\ldots, \text{GL_TEXTURE_WRAP_S}, \text{GL_REPEAT})
 \]
• Clamp every component to range $[0...1]$
 – Re-use color values from border of texture image
 \[
 \text{glTexParameteri}(\ldots, \text{GL_TEXTURE_WRAP_S}, \text{GL_CLAMP})
 \]
Reconstruction

- How to deal with:
 - pixels that are much larger than texels?
 (apply filtering, “averaging”)
 - pixels that are much smaller than texels?
 (interpolate)
MIP-mapping

Use an “image pyramid” to precompute averaged versions of the texture

Without MIP-mapping

With MIP-mapping

MIP mapping

Problem:

- A MIP-map level selects the same minification factor for both the \(s \) and the \(t \) direction (isotropic filtering)
- In reality, perspective foreshortening (amongst other reasons) can cause different scaling factors for the two directions
MIP mapping

Which resolution to choose:

- MIP-mapping: take resolution corresponding to the smaller of the sampling rates for \(s \) and \(t \)
 - Avoids aliasing in one direction at cost of blurring in the other direction
- Better: anisotropic texture filtering
 - Also uses MIP-map hierarchy
 - Choose larger of sampling rates to select MIP-map level
 - Then use more samples for that level to avoid aliasing
 - Maximum anisotropy (ratio between \(s \) and \(t \) sampling rate) usually limited (e.g. 4 or 8)