Ray-Tracing

CPSC 414

CAD Raytraced Image of Audi R8C
Raytracing

© Wolfgang Heidrich and Michiel van de Panne

University of British Columbia
Overview

So far
- projective rendering (hardware)
- radiosity

Ray-Tracing
- simple algorithm for software rendering
- extremely flexible
- well suited to transparent and specular objects
- global illumination (*)
- partly physics-based: geometric optics

Ray-Tracing

```c
raytrace( ray ) {
    find closest intersection
    cast shadow ray, calculate colour_local
    colour_reflect = raytrace( reflected_ray )
    colour_refract = raytrace( refracted_ray )
    colour = k1*colour_local +
             k2*colour_reflect +
             k3*colour_refract
    return( colour )
}
```

- “raycasting” : only cast first ray from eye
Ray-Tracing
Ray-Tracing

Ray Termination Criteria:

- ray hits a diffuse surface
- ray exits the scene
- threshold on contrib. towards final pixel colour
- maximum recursion depth

Issues:

- Generation of rays
- Intersection of rays with geometric primitives
- Geometric transformations
- Lighting and shading
- reducing # of ray-object intersection tests
Ray-Tracing – Generation of Rays

Camera Coordinate System
- Origin: C (camera position)
- Viewing direction: \(\mathbf{v} \)
- Up vector: \(\mathbf{u} \)
- \(x \) direction: \(\mathbf{x} = \mathbf{v} \times \mathbf{u} \)

Note:
- Corresponds to viewing transformation in rendering pipeline!
- See `gluLookAt`...

Ray-Tracing – Generation of Rays

Other parameters:
- Distance of Camera from image plane: \(d \)
- Image resolution (in pixels): \(w, h \)
- Left, right, top, bottom boundaries in image plane: \(l, r, t, b \)

Then:
- Lower left corner of image: \(O = C + d \cdot \mathbf{v} + l \cdot \mathbf{x} + b \cdot \mathbf{u} \)
- Pixel at position \(i, j \) (\(i=0..w-1, j=0..h-1 \)):
 \[
 P_{i,j} = O + i \cdot \frac{r-l}{w-1} \cdot \mathbf{x} - j \cdot \frac{t-b}{h-1} \cdot \mathbf{u}
 \]
 \[
 = O + i \cdot \Delta x \cdot \mathbf{x} - j \cdot \Delta y \cdot \mathbf{y}
 \]
Ray-Tracing –
Generation of Rays

Ray in 3D Space:

\[R_{i,j}(t) = C + t \cdot (P_{i,j} - C) = C + t \cdot v_{i,j} \]

where \(t = 0 \ldots \infty \)

Ray-Tracing

Issues:

- Generation of rays
- Intersection of rays with geometric primitives
- Geometric transformations
- Lighting and shading
- Efficient data structures so we don’t have to test intersection with every object
Ray Intersections

Task:
- Given an object o, find ray parameter t, such that $R_{i,j}(t)$ is a point on the object
 - Such a value for t may not exist
- Intersection test depends on geometric primitive

Spheres at origin:
- Implicit function:
 \[S(x, y, z) : x^2 + y^2 + z^2 = r^2 \]
- Ray equation:
 \[
 R_{i,j}(t) = C + t \cdot v_{i,j} = \begin{pmatrix} c_x \\ c_y \\ c_z \end{pmatrix} + t \begin{pmatrix} v_x \\ v_y \\ v_z \end{pmatrix} = \begin{pmatrix} c_x + t \cdot v_x \\ c_y + t \cdot v_y \\ c_z + t \cdot v_z \end{pmatrix}
 \]
Ray Intersections

To determine intersection:
- Insert ray $\mathbf{R}_{ij}(t)$ into $S(x, y, z)$:

$$
(c_x + t \cdot v_x)^2 + (c_y + t \cdot v_y)^2 + (c_z + t \cdot v_z)^2 = r^2
$$

- Solve for t (find roots)
 - *Simple quadratic equation*

Ray Intersections

Other Primitives:
- Implicit functions:
 - *Spheres at arbitrary positions*
 - Same thing
 - *Conic sections (hyperboloids, ellipsoids, paraboloids, cones, cylinders)*
 - Same thing (all are quadratic functions!)
 - *Higher order functions (e.g. tori and other quartic functions)*
 - root-finding more difficult
 - resort to numerical methods
Ray Intersections

Other Primitives (cont)

- Polygons:
 - First intersect ray with plane
 - linear implicit function
 - Then test whether point is inside or outside of polygon (2D test)
 - For convex polygons
 - Suffices to test whether point in on the right side of every boundary edge
 - Similar to computation of outcodes in line clipping

Ray-Tracing

Issues:

- Generation of rays
- Intersection of rays with geometric primitives
- Geometric transformations
- Efficient data structures so we don’t have to test intersection with every object
Geometric Transformations:

- Similar goal as in rendering pipeline:
 - Modeling scenes more convenient using different coordinate systems for individual objects
- Problem:
 - Not all object representations are easy to transform
 - This problem is fixed in rendering pipeline by restriction to polygons (affine invariance!)
 - Ray-Tracing has different solution:
 - The ray itself is always affine invariant!
 - Thus: transform ray into object coordinates!

Ray Transformation:

- For intersection test, it is only important that ray is in same coordinate system as object representation
- Transform all rays into object coordinates
 - Transform camera point and ray direction by inverse of model/view matrix
- Shading has to be done in world coordinates (where light sources are given)
 - Transform object space intersection point to world coordinates
 - Thus have to keep both world and object-space ray