Projective Rendering Pipeline

- OCS - object coordinate system
- WCS - world coordinate system
- VCS - viewing coordinate system
- CCS - clipping coordinate system
- NDCS - normalized device coordinate system
- DCS - device coordinate system

4x4 matrix

OCS → WCS

transformations

WCS → VCS

OCS

VCS

WCS

 CCS

 projection

transformation

NDCS

DCS

Lines and Curves

Explicit

- line: \[\begin{align*}
 y &= mx + b \\
 y &= \frac{(y_2 - y_1)(x - x_1) + y_1}{x_2 - x_1}
\end{align*} \]

- circle: \[y = \pm \sqrt{r^2 - x^2} \]

Implicit

- line: \[F(x,y) = (x-x_0)(y-y_0) dx + (y-y_0) dy = 0 \]

- plane: \[z = Fx + Fy + D \]

- sphere: \[z = \pm \sqrt{r^2 - x^2 - y^2} \]

Lines and Curves

Parametric

- line: \[\begin{align*}
 x(t) &= x_0 + t(x_1 - x_0) \\
 y(t) &= y_0 + t(y_1 - y_0) \\
 t &\in [0,1] \\
 P(t) &= P_0 + t(P_1 - P_0) \\
 P(t) &= (1-t)P_0 + tP_1
\end{align*} \]

- circle: \[\begin{align*}
 x(\theta) &= r \cos(\theta) \\
 y(\theta) &= r \sin(\theta) \\
 &\theta \in [0,2\pi]
\end{align*} \]

- plane: \[P(1,t) = P_0 + t(P_1 - P_0) + t(P_2 - P_0) \]

Polygons

- Interactive graphics uses Polygons
 - Can represent any surface with arbitrary accuracy
 - Splines, mathematical functions, ...
 - simple, regular rendering algorithms
 - embed well in hardware

Even hippos are made of polygons!
From Polygons to Triangles

- why? triangles are planar and convex
- simple convex polygons
 - break into triangles, trivial
 - `glBegin(GL_POLYGON) ... glEnd()`
- concave or non-simple polygons
 - break into triangles, more effort
 - `gluNewTess(), gluTessCallback(), ...`

What is Scan Conversion? (a.k.a. Rasterization)

- screen is discrete

Scan Conversion

A General Algorithm

- intersect each scanline with all edges
- sort intersections in x
- calculate parity to determine in/out
- fill the ‘in’ pixels

Edge Walking

past graphics hardware

- works for arbitrary polygons
- efficiency improvement:
 - exploit row-to-row coherence using “edge table”

\[
\text{scanTrapezoid}(x_L, x_R, y_T, y_B, \Delta x_L, \Delta x_R)\]

\[
\frac{y_T - y_B}{\Delta x_R} = \frac{1}{\Delta x_R} \implies m_R = \frac{1}{\Delta x_R}
\]
Edge Walking Triangles

Issues
- many applications have small triangles
 - setup cost is non-trivial
- clipping triangles produces non-triangles

Using Edge Equations

- clip to window by checking the bounds to the window
Edge Equations

- So...we can find edge equation from two verts.
- Given P_0, P_1, P_2, what are our three edges?

 How do we make sure the half-spaces defined by the edge equations all share the same sign on the interior of the triangle?
- A: Be consistent (Ex: $[P_0\ P_1\ P_2\ P_0]$)

 How do we make sure that sign is positive?
- A: Test, and flip if needed ($A=A, B=B, C=C$)

Edge Equations: Code

Basic structure of code:

- Setup: compute edge equations, bounding box
- (Outer loop) For each scanline in bounding box...
- (Inner loop) ...check each pixel on scanline, evaluating edge equations and drawing the pixel if all three are positive

```
findBoundingBox(&xmin, &xmax, &ymin, &ymax);
setupEdges (&a0,&b0,&c0,&a1,&b1,&c1,&a2,&b2,&c2);
for (int y = yMin; y <= yMax; y++) {
    for (int x = xMin; x <= xMax; x++) {
        float e0 = a0*x + b0*y + c0;
        float e1 = a1*x + b1*y + c1;
        float e2 = a2*x + b2*y + c2;
        if (e0 > 0 && e1 > 0 && e2 > 0)
            Image[x][y] = TriangleColor;
    }
}
```

Edge Equations: Code

```
// more efficient inner loop
for (int y = yMin; y <= yMax; y++) {
    float e0 = a0*xMin + b0*y + c0;
    float e1 = a1*xMin + b1*y + c1;
    float e2 = a2*xMin + b2*y + c2;
    for (int x = xMin; x <= xMax; x++) {
        if (e0 > 0 && e1 > 0 && e2 > 0)
            Image[x][y] = TriangleColor;
        e0 += a0;   e1+= a1;    e2 += a2;
    }
}
```

Triangle Rasterization Issues

Exactly which pixels should be lit?

A: Those pixels inside the triangle edges

What about pixels exactly on the edge?

- Draw them: order of triangles matters (it shouldn’t)
- Don’t draw them: gaps possible between triangles

We need a consistent (if arbitrary) rule

- Example: draw pixels on left or top edge, but not on right or bottom edge
Triangle Rasterization Issues

Sliver

Moving Slivers

Triangle Rasterization Issues

Shared Edge Ordering

Interpolation During Scan Conversion

• interpolate between vertices: (demo)
 - \(z \)
 - \(r,g,b \) colour components
 - \(u,v \) texture coordinates
 - \(N_x,N_y,N_z \) surface normals

• three equivalent methods (for triangles)
 1. bilinear interpolation
 2. plane equation
 3. barycentric coordinates

1. Bilinear Interpolation

• interpolate quantity along LH and RH edges, as a function of \(y \)
 - then interpolate quantity as a function of \(x \)

2. Plane Equation

• \(v = Ax + By + C \)

\[
\begin{align*}
 \text{Plane eq:} & \quad Ax + By + Cz + D = 0 \\
 & \Rightarrow A(x-x_1) + B(y-y_1) + C(z-z_1) = 0 \\
 & \Rightarrow v = A(x - x_1) + B(y - y_1) + C(z - z_1) \\
 \text{Computing } & \quad \begin{pmatrix} A & B & C \end{pmatrix} \begin{pmatrix} x_1 & y_1 & z_1 \end{pmatrix} \\
 & \Rightarrow \begin{pmatrix} x_2 & y_2 & z_2 \end{pmatrix} = (P-P_1) \times (P-P_2) \\
 & \Rightarrow N \cdot \rho = 0 \\
 & \Rightarrow \rho = -N \cdot \rho \\
 & \text{choose any } \rho;
\end{align*}
\]
3. Barycentric Coordinates

- Weighted combination of vertices
 \[P = \alpha \cdot P_1 + \beta \cdot P_2 + \gamma \cdot P_3 \]
 \[\alpha + \beta + \gamma = 1 \]
 \[0 \leq \alpha, \beta, \gamma \leq 1 \]

"Convex combination of points"

- Once computed, use to interpolate any # of parameters from their vertex values
 \[z = \alpha \cdot z_1 + \beta \cdot z_2 + \gamma \cdot z_3 \]
 \[r = \alpha \cdot r_1 + \beta \cdot r_2 + \gamma \cdot r_3 \]
 \[g = \alpha \cdot g_1 + \beta \cdot g_2 + \gamma \cdot g_3 \]
 etc.

Computing Barycentric Coordinates

1. Compute equation for \(\overline{RB} \)
 \[F(x, y) = Ax + By + C \]

2. Compute \(F(a) = \ell \) such that
 \[F(a) = 1 \]
 \[\ell = \sqrt{F(a)} \]
 \[\kappa = \frac{1}{\ell} \]
 \[a = F(x, y) = Ax + By + C \]
 where \(\ell = \kappa \cdot C \)
 \[C = \kappa \cdot C \]

Note that we could use \(a, \overline{RB} \) for the input test for scan conversion.