Overview of the next little while

Code Generation

- Assembly with Temps
- Flow Graph: directed graph
 - Nodes = Assem instructions
 - Edges = Transfer of control
- Liveness: for each node in flowgraph:
 - Compute which Temps are “live”
 - just before that instruction
 - just after that instruction
- Interference Graph: undirected graph
 - Nodes: Temps
 - Edge: t1 <-> t2 : t1 and t2 can not be allocated to same register
- Register allocation (by Graph Colouring)
Overview of the next little while

Code Generation

- **Assembly with Temps**
- **Flow Graph**: directed graph
 - Nodes = Assembly instructions
 - Edges = Transfer of control
- **Liveness**: for each node in flowgraph:
 - Compute which Temps are “live”
 - just before that instruction
 - just after that instruction
- **Interference Graph**: undirected graph
 - Nodes: Temps
 - Edge: t1 <-> t2 : t1 and t2 can not be allocated to same register

Register allocation (by Graph Colouring)

Chapter 9

Chapter 10

Chapter 11
Example:

```plaintext
movq $0, t1
L1:  movq t1, t2
addq $1, t2
addq t2, t3
imulq $2, t2, t1
cmpq $N, t1
jl  L1
movq t3, %rax
```

```
1: movq $0, t1
   └──> 2: movq t1, t2
      └──> 3: addq $1, t2
             └──> 4: addq t2, t3
             └──> 5: imulq $2, t2, t1
                 └──> 6: cmpq $N, t1
                     └──> 7: jl  L1
                         └──> 8: movq t3, %rax
```
Control Flow Graph

• Not going to spend much time explaining how to construct the flow graph
 – It is pretty straightforward:
 • create a node for each Assem instruction
 • add edges based on the “jumps()” information in the Assem instructions

• Note:
 – In our approach each instruction becomes a flow node.
 – In a more sophisticated implementation
 • basic blocks as flow nodes
 • more efficient for many algorithms (fewer nodes)
Liveness

• Definition: A variable (or Temp) is live at some point in a program if it holds a value that may still be used in the future.

• Determine the liveness of Temps t1, t2, and t3 in the program on the right.
 – What variables are live just before/after each instruction?
 – How do instructions affect liveness?
Liveness exercise

1: movq $0, t1

2: movq t1, t2

3: addq $1, t2

4: addq t2, t3

5: imulq $2, t2, t1

6: cmpq $N, t1

7: jl L1

8: movq t3, %rax
Flow Graph Terminology

\[\text{pred}[n] = \{ p1, p2 \} \]

\[\text{succ}[n] = \{ s1, s2 \} \]
The nodes in the graph are Assembly instructions.

They have “def” and “use” information attached to them.

Example:
- \text{def}(4) = \{ t3 \}
- \text{use}(4) = \{ t2, t3 \}
Let’s define the following notations:

\[\text{in}[n] = \{ x \mid x \text{ is live just before the execution of } n \} \]
\[\text{out}[n] = \{ x \mid x \text{ is live just after the execution of } n \} \]

What is the relationship between in[n] and out[n] for a given instruction.

- In other words, how does an instruction affect the liveness of variables?

What is the relationship between in and out sets of a node and its predecessors and successors?

Let’s start with some examples...
Dataflow Equations

in\[n\] = \{ x \mid x \text{ is live just before the execution of } n \}
out\[n\] = \{ x \mid x \text{ is live just after the execution of } n \}

• What is the relationship between in\[n\] and out\[n\] for a given instruction.

\text{addq} \ t2, t3
use = \{

\}
def = \{

\}
in = \{

\}
out = \{

\}
Dataflow Equations

\[
\text{in}[n] = \{ x \mid x \text{ is live just before the execution of } n \} \\
\text{out}[n] = \{ x \mid x \text{ is live just after the execution of } n \}
\]

- What is the relationship between \text{in}[n] and \text{out}[n] for a given instruction.

```
\text{imulq} \quad \$2, t2, t1
```

\[
\text{use} = \{ \}
\]

\[
\text{def} = \{}
\]

\[
\text{in} = \{}
\]

\[
\text{out} = \{}
\]
What is the relationship between in and out sets of a node and its predecessors and successors?

Dataflow Equations

\[
in[n] = \{ x \mid x \text{ is live just before the execution of } n \} \\
out[n] = \{ x \mid x \text{ is live just after the execution of } n \} \]

1: \text{movq } 0, t1
2: \text{movq } t1, t2
3: \text{addq } 1, t2
4: \text{addq } t2, t3
5: \text{imulq } 2, t2, t1
6: \text{cmpq } N, t1
7: \text{jl } L1
8: \text{movq } t3, %rax
Dataflow Equations

- What is the relationship between \(\text{in}[n] \) and \(\text{out}[n] \) for a given instruction.

\[
\text{in}[n] = \text{use}[n] \cup (\text{out}[n] - \text{def}[n])
\]

- What is the relationship between \(\text{in} \) and \(\text{out} \) sets of a node and its predecessors and successors?

\[
\text{out}[n] = \bigcup_{s \in \text{succ}[n]} \text{in}[s]
\]
We can solve these equations with an iterative approach:

1. Start with empty sets for $\text{in}[n]$ and $\text{out}[n]$ for all nodes in the graph
2. (Re)compute new $\text{in}[n]$ and $\text{out}[n]$ using the equations.
3. If there was a change in any $\text{in}[n]$ or $\text{out}[n]$, repeat step 2
Solving Dataflow Equations

- Does this algorithm work?
 - Does it terminate?
 - If it terminates, does it give a correct solution?
 - If there are multiple solutions, which one does it give?
Formally

• The algorithm is correct because:
 – the equations are “monotonic” functions (on sets).
 – there is an upper bound (on the size of the sets, because there are only so many Temps in program)
 – On each iteration the sets can only grow, not shrink.
 – Because there is an upper bound the algorithm must terminate!

• If the algorithm terminates, recomputing the sets had “no effect.”
 – This means that the equations are satisfied!
Monotonicity?

• Definition:
 • A function f is monotonic if, for all x, y:
 - $x \leq y \Rightarrow f(x) \leq f(y)$
 • In English: “Making the input bigger can only make the output bigger”

• For our equations we have two functions:
 - The two equations for the in and out sets.
 - $\text{in}[x] = ... \quad \text{out}[x] = ...$

• The \leq relation is the subset relation.
Formally

- The solution that the algorithm finds is the “least possible” solution.
 - This is what you want, larger solutions include “live” variables that are not really live.
 - Least fixed point
 - Can you think of a “bigger” solution that is also a solution?
What is really live after instr 4?
If we are going to be sloppy (inaccurate), which direction is ok?
Implementing Liveness Analysis

• The iterative algorithm is relatively straightforward to implement.
• It is also possible to implement analysis “one temp at a time”.
• In Java, we can encapsulate the iterative approach in a data structure.
“Active” Sets

- An active set is a set of elements. The elements in the set may be computed from, or dependent on, other active sets, including the set itself.

- The set is called “active” because the implementation is done in such a way that if any of the dependent sets change (get more or fewer elements) the active set is also automatically updated.

- We can use these sets to solve data flow equations in a straight-forward way.
 - Assuming the equations are monotonic and the sets are finite.
Active Sets are just Sets

```java
ActiveSet<Integer> oneTwo = new ActiveSet<Integer>();
oneTwo.add(1);
oneTwo.add(2);
oneTwo.add(2);
oneTwo.add(2);

System.out.println("oneTwo = "+oneTwo);
```

Prints:

```
oneTwo = ActiveSet { 2, 1 }
```
Active Sets are “active” (always up to date)

ActiveSet<Integer> oneTwo = new ActiveSet<Integer>();
oneTwo.add(1);

ActiveSet<Integer> threeFour = new ActiveSet<Integer>();

ActiveSet<Integer> allFour = new ActiveSet<Integer>();
allFour.addAll(oneTwo); // addAll creates a dependency
allFour.addAll(threeFour);

oneTwo.add(2);
threeFour.add(3); threeFour.add(4);

System.out.println("oneTwo = "+oneTwo);
System.out.println("threeFour = "+threeFour);
System.out.println("allFour = "+allFour);

Prints:
oneTwo = ActiveSet { 2, 1 }
threeFour = ActiveSet { 4, 3 }
allFour = ActiveSet { 4, 3, 2, 1 }
Remove Elements from an AS (functionally)

ActiveSet<Integer> oneTwoThree = new ActiveSet<Integer>();
ActiveSet<Integer> oneTwo = oneTwoThree.remove(list(3));

oneTwoThree.add(1);
oneTwoThree.add(2);
oneTwoThree.add(3);

System.out.println("oneTwo = "+oneTwo);
System.out.println("oneTwoThree = "+oneTwoThree);

Prints:

oneTwo = ActiveSet { 2, 1 }
oneTwoThree = ActiveSet { 3, 2, 1 }
Circular Dependencies are OK!

Problem:

Solve the following equations

\[A = \{1,2\} \cup (B - \{4\}) \]
\[B = \{3,4\} \cup (C - \{5\}) \]
\[C = \{4,5\} \cup A \]

Note: These equations are very similar to the dataflow equations for liveness analysis.

Exercise: Write a piece of Java code that uses our ActiveSet implementation to solve these equations and print out the result.
Circular Dependencies are OK!

```java
ActiveSet<Integer> a = new ActiveSet<Integer>();
ActiveSet<Integer> b = new ActiveSet<Integer>();
ActiveSet<Integer> c = new ActiveSet<Integer>();

// A = \{1,2\} U (B \setminus \{4\})
a.add(1); a.add(2);
a.addAll(b.remove(list(4)));

// B = \{3,4\} U (C \setminus \{5\})
b.add(3); b.add(4);
b.addAll(c.remove(list(5)));

// C = \{4,5\} U A
c.add(4); c.add(5);
c.addAll(a);

// print result:
System.out.println("A = "+a);
System.out.println("B = "+b);
System.out.println("C = "+c);
```

Prints:

```
A = ActiveSet \{ 3, 2, 1 \}
B = ActiveSet \{ 1, 2, 4, 3 \}
C = ActiveSet \{ 1, 2, 3, 5, 4 \}
```
Using ActiveSets to implement liveness analysis

This is up to you... for the project :)

You can also implement liveness using the iterative approach that we discussed previously.