Learning Goals

- Describe the relationship between conceptual design and interface design, and why the distinction is important.
- For a given situation, assess and explain why, when, what, and how you may want to prototype.
- Explain how prototyping fidelity relates to design progression; and give examples of what prototypes at each stage might involve.
- Describe different approaches to creating low fidelity prototypes (paper prototypes in particular).
- Explain the benefits and drawbacks of low fidelity prototyping (paper prototyping in particular).

Announcements

Please fill out the mid-semester survey

This is a great chance to send us anonymous feedback and directly impact how the course is taught. We’ll read every single response.

You’re also welcome to give us direct feedback in person, and/or talk to the TAs and ask them to shoot it up the ladder.

Problem:

- Designer’s conceptual model is communicated via system image: interface, appearance, instructions, system behavior through interaction, transfer, idioms and stereotypes.
- If system image does not make model clear and consistent: user’s mental model will be inconsistent with conceptual model.

"Wrong" vs "simplified"?
prototyping

when, what and how to prototype, intro to prototype fidelity

what is a prototype?

prototypes take many forms:
- cardboard, foam, software, video, clay, paper, hidden people, website, sketches, scripts, index cards etc.

the point: make ideas real:
limited representation of conceptual design for users (and designers, and other stakeholders) to interact with

4 designs: image-enhanced planner

why prototype?

communication: discuss ideas with stakeholders
 • “Where’s the ON button?”
devlop requirements and/or specifications
 • “Uh-oh, here’s something we forgot.”
learning and problem solving
 • “Hey, that will work!”
evaluate interface effectiveness for communicating conceptual model
 • “Whoops, users didn’t understand that.”
further develop conceptual and physical design
 • “That’s way too heavy”
save time and money
 • Don’t waste time coding/building the wrong thing

many different kinds of goals and questions possible

when to prototype?

to get out of a rut, focus discussion, reach agreement

when you have questions and you can’t proceed:
 • functionality:
 – structure, sequencing, flow
 – clarity & completeness of information
 • appearance
 – branding, clarity, aesthetics, color, shape, etc.
 • specifications
 – “design by prototyping” (evolutionary approach)

when you need to communicate ideas
 • design team, managers, users etc.
before you can prototype

before you build, identify:

- **users** and **tasks** to build your prototype around
- sketch of **requirements** you need to address
- **questions** your prototype(s) need to answer

types of prototypes

think of prototyping techniques as **tools in your bag of tricks**

- have lots so that you have appropriate one
- just like evaluation methods
- should be fast, effective and targeted to the issues
 - **don’t waste time** implementing something that won’t teach you anything!

fidelity ranges from low to high

when to use different types of prototypes?

early design
- Choose a representation
- Rough out interface style
- Task walkthrough & redesign
- Fine tune interface, screen design
- Heuristic evaluation and redesign
- Usability testing and redesign
- Limited field testing
- Alpha/Beta tests

late design
- Working systems

User Interface Design Process: Evolving Iterations

- **Understand USERS:**
 - who they are
 - their key tasks
- **Evaluate w:**
 - observation – many kinds
 - ethnography
 - interviews, questionnaires
 - task analysis
- **REFINE Design:**
 - by element
 - considering task varied contexts
- **Make use of:**
 - graphical design
 - interface guidelines
 - style guides
 - real & virtualized users
 - testable medium-fidelity prototypes
- **Release!**

K. MacLean - derived from version by Saul Greenberg (U Calgary)
low fidelity prototypes

meant to be rough, quick to build, easy to throw away

purposes
• proof of concept(s)
• rough (but flexible) interface design
• facilitate communication with users early on
 – can be useful for generating and narrowing requirements

benefits of low fidelity prototypes

cheap/easy to make
• try out and explore multiple conceptual models

lack of polish less intimidating to users
this is surprisingly important
• more willingness to criticize
• inspires more creative feedback
• avoids nitpicky feedback

reduces effort invested by design team
• so easier to make changes, start over

IDEO surgical tool prototype

Source: IDEO Case Study
http://www.ideo.com/case_studies/gyrus/

1. handheld “universal remote control”

Conceptual Prototypes

Source: IDEO Case Study
http://www.ideo.com/case_studies/gyrus/
2. emulating human attention-getting practices with wearable haptics

med to high fidelity prototypes

increasing in completeness and detail:
- more aspects being prototyped at same time
- higher degree of functionality
- higher degree of polish
- etc. . .

fidelity is a spectrum
- not always a firm line between low/med or med/hi

approaches to ‘scoping’ prototype functionality

<table>
<thead>
<tr>
<th>vertical prototyping</th>
<th>horizontal prototyping</th>
</tr>
</thead>
<tbody>
<tr>
<td>includes in-depth functionality for only a few selected features</td>
<td>surface layers only; includes the entire user interface with no underlying functionality</td>
</tr>
<tr>
<td>key design ideas can be tested in depth</td>
<td>a simulation; no real work can be performed</td>
</tr>
</tbody>
</table>

prototype scenario
- scripts of particular fixed uses of the system; no deviation supported
- see whole thing (fake)
- use implemented corner of it.

most relevant for low- and med-fl prototypes (when scope is limited)

summary

<table>
<thead>
<tr>
<th>low fidelity</th>
<th>high fidelity</th>
</tr>
</thead>
<tbody>
<tr>
<td>cheap</td>
<td>complete functionality</td>
</tr>
<tr>
<td>easy to build lots</td>
<td>interactive</td>
</tr>
<tr>
<td>facilitate communication</td>
<td>user-driven</td>
</tr>
<tr>
<td>very early layout design</td>
<td>exploration and testing</td>
</tr>
<tr>
<td>market requirements</td>
<td>look and feel of final product</td>
</tr>
<tr>
<td>proof-of-concept</td>
<td>provides specification</td>
</tr>
<tr>
<td>limited error checking</td>
<td>marketing and sales tool</td>
</tr>
<tr>
<td>limited coding</td>
<td>expensive</td>
</tr>
<tr>
<td>limited functionality</td>
<td>time consuming</td>
</tr>
<tr>
<td>poor for requirements gathering</td>
<td>inefficient proof-of-concept</td>
</tr>
<tr>
<td>can be hard to throw away</td>
<td></td>
</tr>
</tbody>
</table>
Part 2: focus on low fidelity prototyping

paper prototyping

common low-fidelity technique

popular in industry . . .

despite prevalence of ‘mockup’ software tools

because: easy to
 • build
 • alter on the fly
 • show
 • stick on wall & compare
 • discuss

demo

no activity today

instead, go through demo paper prototypes

paper prototyping materials

interface elements/screens created on paper
 • or other ‘easy to throw away or modify’ materials, e.g.,
 - whiteboards
 – magnetic tape
 – transparencies

can incorporate other things that people interact with in completing their task, e.g:
 • other people
 • hardware
CuddleBits

simulating interactions in paper prototyping

can simulate relatively sophisticated interactions
- complex/subtle interactions won’t be perfect
- requires some imagination on users part
- *forces you to stay in “early design” mode*

with some creativity, can mockup almost any kind of widget or interaction
- *which interactions* to show is another question

testing paper prototypes

conduct tests with users with a ‘Computer’
- one person pretends to be a computer
- has flow chart/script of possible actions
- responds to user interactions by manipulating inputs/system status/feedback etc. on prototype

. . . very simple form of *wizard of oz* prototyping

cognitive walkthroughs (W09)
- walkthrough and evaluate screens with experts
Wizard of Oz

human simulates system’s intelligence & interacts w/ user
uses real or mock interface
• “Pay no attention to the man behind the curtain!”
user uses computer as expected
“wizard” (sometimes hidden):
• interprets subject’s input according to a preset algorithm
• has computer/screen behave in appropriate manner
good for:
• adding simulated and complex vertical functionality
• testing futuristic ideas
possible cons?

Wizard of Oz examples

IBM: an imperfect listening typewriter using continuous speech recognition
• secretary (i.e., Wizard) trained to:
 – understand key words as “commands”
 – type responses on screen as the system would
 – manipulate graphic images through gesture and speech
intelligent agents / programming by demonstration
• person trained to mimic “learning agent”
 – user provides examples of task they are trying to do
 – computer learns from them
• shows how people specify their tasks

example:

balsamiq mockups linked together in Prezi or PPT
• can move between screens, but no real interactivity

Technique:

digital storyboards

• draw each storyboard scene on computer
 – use wire framing/mockup software (e.g., balsamiq)
 – or painting/drawing packages (e.g., photoshop)
• a very thin horizontal prototype!
• does not capture the interaction “feel”

link to example:
http://prezi.com/_buxnoycohv/?utm_campaign=share&utm_medium=copy&rc=ex0share
technique: scripted simulations & slide shows
encode the storyboard on the computer
• scene transition activated by simple user inputs (i.e. clickable regions)
• a simple horizontal and/or vertical prototype
• supports ‘limited’ branching
user given a very tight script/task to follow
• appears to behave as a real system
• but script deviations blow the simulation

Control panel for pump 2
- coolant flow 45 %
- retardant 20%
- speed 100%
- shut down

moving towards med-fi elements can be active – but still only narrow functionality

Control panel for pump 2
- DANGER!
- coolant flow 0 %
- retardant 20%
- speed 100%
- next drawing (on mouse press over button)
- shut down

more low fidelity prototypes: tutorials and manuals
write them in advance of the system:
• tutorial for step-by-step description of an interaction
 – an interface “walk-through” with directions
• manual for reference of key concepts
 – in-depth technical description
if highly visual: storyboard is set within text explanations

a manual is a kind of prototype!

summary
prototyping
• speeds up design and lowers overall cost
• allows users to react to the design and suggest changes
• prototypes and scenarios are used throughout design
• low-fi best for brainstorming and choosing a conceptual model
• med/hi-fi prototypes best for fine-tuning and detailed design

low prototyping methods
• vertical, horizontal prototyping
• paper
• sketching
• storyboarding
• scripted simulations
• Wizard of Oz