medium-fidelity prototyping, and usability testing
prototypes part II: medium and high fidelity prototyping;

choosing prototyping tools
medium and high fidelity prototyping

where else we’re covering it

by now W09 pre-reading – various
• tutorials – Axure, HTML, CSS

upcoming:
• last part of project part I (in planning for part II)
• project part II
today

• strategic overview
 • medium fidelity to high fidelity
 • iteration; prototype only what you need
• examples
 • from past 344/544 projects
 • demo of one type (what you can do with ppt)
• case studies + activity
learning goals

• list dimensions of prototyping fidelity and explain how these dimensions may vary;

• explain how these dimensions might differ in low to med to high fidelity prototypes, and give examples of when/why you may use each type

• make strategic choices about prototyping tools given your goals and constraints; be able to justify your choice.
what is a prototype?

prototypes take many forms:
 cardboard, foam, software, video,
 clay, paper, hidden people, website,
 sketches/skits, scripts, etc.

the point: make ideas real

4 designs: image-enhanced planner
types of prototypes

think of prototyping techniques as tools in your bag of tricks

• have lots so that you have appropriate one
• just like evaluation methods
• should be fast, effective and targeted to the issues
 ➔ don’t waste time implementing something that won’t teach you anything!

fidelity ranges from low to high
when to use different types of prototypes?

early design

Choose a representation
Rough out interface style
Task walkthrough & redesign

Fine tune interface, screen design
Heuristic evaluation and redesign

Usability testing and redesign
Limited field testing
Alpha/Beta tests

Low-fidelity prototypes
Medium-fidelity prototypes
High-fidelity prototypes / partially-working systems
Working systems

late design
low fidelity prototypes

meant to be rough, quick to build, easy to throw away

purposes

• proof of concept(s)
• rough (but flexible) interface design
• facilitate communication with users early on
 – can be useful for generating and narrowing requirements
med to high fidelity prototypes

increasing in **completeness** and **detail**:
- more aspects being prototyped at same time
- higher degree of functionality
- higher degree of polish
- etc. . .

fidelity is a spectrum
- not always a firm line between low/med or med/high
Understand USERS:
- who they are
- their key tasks

Examine existing:
- user tasks & objectives
- contexts
- interfaces

Evaluate w/:
- observation – many kinds
- ethnography
- interviews, questionnaires
- task analysis

Make use of:
- requirements
- task analysis
- real & virtualized users
- technology options
- company IP

Evaluate w/:
- observation
- interview/quest
- participatory interaction
- task walk-throughs

low fidelity prototyping methods

• user and task descriptions
• design requirements

Understand DESIGN:
- design space and risks
- choose design approach

Make use of:
- graphical design
- interface guidelines
- style guides
- real & virtualized users

Evaluate w/:
- usability testing – controlled, uncontrolled
- heuristic evaluation

med/ high fidelity prototyping methods

• throw-away prototypes
• design direction
• risk analysis

REFINE Design:
- by element
- considering task
- varied contexts

Make use of:
- testable medium-fidelity prototypes

CONFIRM & debug:
- performance in real use

• alpha/beta systems or
• complete specification

Release!

Field testing

K MacLean - derived from version by Saul Greenberg (U Calgary)
many dimensions of “fidelity”

what are ways a prototype can be ‘true to life”?

• visual realism: how real it looks. polish, graphic imagery
• physical realism: shape and form for 3D objects; feel
• scope: how many functions included; horizontal vs. vertical
• functionality: what actually works? e.g. web app: links live?
• data: operates on real vs. faked data
• autonomy: operates alone vs. requires “supervision”
• platform: interim vs. final implementation
• ???
matching game: What medium makes most sense for each dimension?

Prototyping dimension:

- how real it looks (polish)
- scope how many functions included; horizontal vs. vertical
- real vs. faked functionality how much of it is faked?
- operates on real vs. faked data
- operates alone vs. requires “supervision”
- for 3D products: physical aspects, or just images?
- interim vs. final platform

prototyping medium:

- paper
- Balsamiq
- Axure
- PowerPoint
- HTML
- Java/Swing
- modeling foam & hot-melt glue
- Flash
- Visual Basic
- Photoshop
- Arduino
- found objects
- Python
what’s the difference between “low” and “medium”?

it has become confusing …

used to be obvious! paper vs. nearly anything else.

in last ~10 years: many powerful tools that:

1. make it **very easy** *(a low-fi trait)* to generate mockups
2. look **real** and are at least **somewhat interactive** *(usually a “medium fidelity” trait)*

* e.g.: balsamiq, axure – low or medium; usually not high

→ many prototyping platforms can be low or medium! *(depends on how you use it.)*

but, FEW are all three (low to high)
what’s the difference between “medium” and “high”?

• fidelity is partly a matter of completeness:
 ➔ as you get more hi-fi: may become more restricted in platform *(you’re trying to do more at once).*
many things:
drag-and-drop GUI toolkits for standard UI mockups
 • e.g. Axure, Visual Basic
scripting languages & interface libraries for add’l flexibility
 • e.g. python, tcl/tk, java script libraries (e.g., jquery)
graphical languages for visualization & novel interface creation
 • VB, Java, Flash; Processing; d3;
special purpose tools and environments
 • e.g. toolkits for integrating speech, haptics, I/O devices

→ a prototyping platform can be medium- OR hi-fi;
depends on how you use it.
the situation today for prototyping tools
(vs. developing on final platform)

for simple prototyping:
• balsamiq, axure, html, powerpoint

other popular tools:
• InVision, Sketch, POP (digitizing paper prototypes) + lots more!

advanced UIs still require (scripting) language + libraries
• HTML + javascript
• Tool Command Language/Tool Kit (TCL/TK)
• Python
• Processing (Java based, but way more accessible; good for sketching, no good for larger code projects)
• still a need for C++, C#, Objective C, Java
live example: powerpoint

- link screenshots together (Windows, OSX)
- some additional functionality you can add, like with prototyping templates you can purchase for Keynote and PowerPoint (e.g. Keynotopia)
examples from past 344/444 projects
balsamiq: low to medium

Quickly **mock up** images and hyperlinked interactivity. But - real functionality difficult.
html:
final platform
didn’t need
to be glitzy
easy to copy existing text, look and feel
then alter everything
home alarm system

flash:
product for the home needed to gauge reactions to having it in ones house
imagery + graphic resolution critical
e-reader & note-taking tool

Flex:

needed to test how well the concept worked for actually taking notes in lecture

highly functional
detailed vertical
sonic stage music synchronization tool

flash w/ imported photoshop
observe scanned, hand-drawn sketches
gorgeous
didn’t need to be
didn’t do well.
how do you know when you have – or need – a high-fi prototype?

• scope is complete (horizontal and vertical)

• prototype can be tested in just about every way performance as well as subjective and cognitive analysis; more realistic scenarios; in field

• feels like time to switch to final development platform

• design is becoming rigid and finalized.
case studies + activity

iterative prototyping in industry

for each of the following case studies, complete a worksheet page.

some high-level questions:

- what were the main goals of the prototype?
- what fidelity was the prototype?
- did the design team choose the correct tools for the job? what were the tradeoffs?
activity recap:

1. What *investigative challenges* do you need to answer?
2. What kind of *evaluation* should you do to answer that question?
3. What should a *prototype* to support that evaluation emphasize?
4. What *prototyping tool* might be a good choice?
most important lessons today:

1) it is COMPLICATED (slow, expensive) to prototype multiple dimensions at once.
 → so don’t. Instead: \textit{modularity of prototyping}.

2) each prototyping tool has strengths and weaknesses
 - may make it \textit{better} (more efficient and capable) for some of these prototyping dimensions than others.
 → you may need multiple tools throughout your design’s life cycle.
usability testing
usability testing

where else we’re covering it

by now (W09 pre-reading – RSP)
• usability testing

upcoming:
• project part II – usability evaluation of your medium fidelity prototype
learning goals

• explain when usability studies are typically conducted, why they’re conducted, and what you might try to learn
 – give examples of locations, tasks, metrics, evaluation methods that might be involved

• experience in analyzing a reported usability study
where do usability studies fit in?

HCI starts with **understanding the problems** that users are having

1st half of course

then designing a system that solves these problems

→ requirements, task examples specify **what** it should do
→ decide on conceptual/interface design for **how** system will do it

usability studies: see if we succeeded!
what is a usability study?

• we spent 1st half of term on evaluation for understanding the problems of the users.

• we’re now conceptualizing solutions; creating interface(s), refining with walkthroughs.

• next we’ll refine, create medium-fidelity prototypes

• then: evaluate usability of that system

 ➔ how easy it is for the user to get the system to do what s/he needs it to do.
Understand USERS:
- who they are
- their key tasks

Understand DESIGN:
- design space and risks
- choose design approach

Make use of:
- requirements
- task analysis
- real & virtualized users
- technology options
- company IP

Make use of:
- graphical design
- interface guidelines
- style guides
- real & virtualized users

Evaluate w/:
- observation
- interview/quest
- participatory interaction
- task walk-throughs
- low fidelity prototyping methods

Evaluate w/:
- usability testing – controlled, uncontrolled
- heuristic evaluation
- med/high fidelity prototyping methods

Evaluate w/:
- observation – many kinds
- ethnography
- interviews, questionnaires
- task analysis

Evaluate w/:
- usability testing – controlled, uncontrolled
- heuristic evaluation

Make use of:
- requirements
- task analysis
- real & virtualized users
- technology options
- company IP

Make use of:
- graphical design
- interface guidelines
- style guides
- real & virtualized users

CONFIRM & debug:
- performance in real use
- alpha/beta systems or
- complete specification

REFINE Design:
- by element
- considering task
- varied contexts

low fidelity prototyping methods

mid/high fidelity prototypes

Field testing

Release!

K MacLean - derived from version by Saul Greenberg (U Calgary)
how is usability testing different from other evaluations we’ve done?

purpose: test a relatively refined prototype and its support of task execution

evaluation goals: specific to your interface and needs, but generally need to capture things like *breakdowns*, *performance*, *learning challenges*, *acceptance*

task definitions and participant choice are crucial to ensure you’re covering the right ground
how is usability testing different from other evaluations we’ve done?

tools used: Usability testing makes use of observation, interviews, questionnaires – a large subset of our basic evaluation instruments.

metrics: count it.
evaluating to understand: often looking for qualitative insights stories, workflows, obstacles, dependencies, missing links.

testing for usability: performance dominated by how long, and how many mistakes.

where and how:
evaluating to understand: good to do in natural environment usability testing: to obtain experiment control, often done in lab
biggest difference:
experimental material

Usability testing requires a refined interface.

• This could be… the medium-fidelity prototype you’ll create

• Or it could be the bad old interface, which you plan to revise or replace
 i.e. might be one part of “evaluate for understanding”

• Contrast this with the primary focus of ‘evaluation for understanding’: task modeling, needs requirements, etc.
when designing a usability test:

choice of methods: **triangulate**
- typically: one instrument **counts** something, while another **interprets** what was counted

choice of metrics: driven by your requirements
- as well as basic usability principles

how many users:
- should be representative of your user groups
 - e.g. if you want to support both expert and novice users, should have good numbers of both!
- Within a demographic, <4-5 is dubious; >10-12 is of marginal additional value.
- Sometimes constraints dictate low numbers.
 - If you have to generalize, consider who your test users are, and how representative they are?
how many users?

source: https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
context

generally: experimenter specifies the task

can be:

• at quite low level; e.g. the subtask that will take you from one screen to the next.

• or, at entire task level: see if someone can figure it out, start to finish, and watch /count / measure the challenges s/he has not done with those task examples yet!

⇒ can use them as a basis for a stripped-down task description much as you did for cognitive walkthroughs (but don’t usually want to include the story)
example usability study

https://youtu.be/QckIzHC99Xc?t=56s
example usability study script
metrics
examples of common ones

time:
- to complete a task (entire, or a portion)
- learn a task
- resume a task after interruption
- find something on a screen
- attain specified degree of proficiency
- etc.

ersors:
- number per task or unit of time, in navigation, in selection, in interpretation;
- number of users making the error;
- alternately: number of successes
- etc.
metrics
examples of common ones

events of interest:
- page views or clicks,
- access of particular tools
- timeouts
- questions asked or help tools consulted
- # users willing to recommend
- etc.

subjective factors:
- task level satisfaction
- perception of aesthetics
- perceived ease of use
- perceived preference
- etc.

(can be measured on a Likert or semantic rating scale)
ICICS usability lab located in X7
activity

analyze a documented usability study
usability testing

in your project

evaluation goals
- you will likely want to draw from your requirements and task examples; may need to prioritize;
- test *how well* your system supports what you intended it to
- metrics, evaluation methods, etc. should follow

medium fidelity prototype scope
- prototype won’t be a complete working system
- it should do just enough to test if your design will meet your goals (and be achievable in the time available)
alternatives to usability testing

Usability testing generally requires users.

• “discount” methods can also target refined prototypes and be done without users:
 • heuristic evaluation
 • cognitive walkthrough

• because you don’t need users . . .
 – can do it first! (before a usability study)
 – possible to apply these methods yourself while iterating on a design (before it’s totally finished)
on your own: plan a usability study

Imagine you’re running a usability study of Kobo.com (or other site or application)
Kobo is a website for buying e-books, and managing purchases

1. what design stage are you in?

2. what would be good **evaluation goals**?
 - think about: why would you be doing this study ("finished" site)

3. what would be a good study **task**? (for this evaluation)

4. what are good **metrics** for that task?

5. what are **evaluation type** and **data recording methods** to collect those metrics?
usability study – one example

Design Stage: mid or late (refined design); or PRE design (check existing before initiate a re-design)

Evaluation goal: how easy is it easy for users to complete purchases?

Task: buying an e-book on Kobo.

Metrics: time to complete a transaction; # of errors, backtracks, etc

for an in-lab, in person usability test, you might do:

- *observation* (video recorded), analyzed by *counting* events of interest (errors, dead ends, can’t find something); AND
- a *structured post-interview*.

for to administer remotely:

- replace observation with *web clickthrough logging*; AND
- a *online post-questionnaire*.