
CPSC 320 Learning Goals

Course-level Learning Goals

At the end of the course, a student will be able to:

1. Recognize which algorithm design technique(s), such as divide and conquer, prune and
search, greedy strategies, or dynamic programming was used in a given algorithm.

2. Select and judge several promising paradigms and/or data structures (possibly slightly
modified) for a given problem by analyzing the problem’s properties.

3. Implement a solution to a problem using a specified algorithm design paradigm, given
sufficient information about the form of that problem’s solution.

4. Select, judge and apply promising mathematical techniques (such as asymptotic no-
tations, recurrence relations, amortized analysis and decision trees) to establish rea-
sonably tight upper and lower bounds on the running time of algorithms.

5. Recognize similarities between a new problem and some of the problems they have
encountered, and judge whether or not these similarities can be leveraged towards
designing an algorithm for the new problem.

Topics-level Learning Goals1

At the end of the course, a student will be able to:

• Asymptotic analysis:

ASA.1 Apply the definitions of O, Ω, and Θ to derive upper and lower bounds on the
worst-case running times of algorithms that use loops and conditionals.4

ASA.2 Use decision trees to prove lower bounds on the worst-case running time of
comparison-based algorithms for problems related to queries about, and or-
dering of, elements.4

ASA.3 Use limits to determine the asymptotic relationship between two functions (O,
o, Ω, ω or Θ).4

• Reductions:

RED.1 Explain how a reduction can be used to solve an algorithmic problem2,5

RED.2 Explain how a reduction can be used to prove a lower bound on the time
complexity of any solution to a problem.2,5

1The superscripts at the end of each learning goal refer to the course-level learning goal(s) it helps achieve.



2

RED.3 Given a problem that is reasonably similar to one discussed in class or seen
on an assignment, design a reduction to that problem.2,5

• Divide and conquer algorithms:

DC.1 Analyze a recursive algorithm to derive a recurrence relation whose solution
describes the algorithm’s worst-case running time.4

DC.2 Prove a given upper or lower bound on the solution of a recurrence relation,
using mathematical induction.4

DC.3 Draw a recursion tree that corresponds to the execution of a recursive algo-
rithm, and derive from that recursion tree a summation whose solution is the
algorithm’s worst-case running time.4

DC.4 Apply the Master Theorem to obtain quickly the solution to most recurrence
relations that arise from divide and conquer algorithms.4

DC.5 Recognize algorithms that implement the divide and conquer paradigm.1

DC.6 Design a divide and conquer algorithm for a problem in which the merge step
is reasonably straightforward.3

DC.7 Judge whether or not the divide and conquer paradigm might be appropriate
for solving a problem.2

• Randomization:

R.1 Explain the usefulness of randomization when constructing a data structure
or designing an algorithm.2,4

R.2 Compare and contrast randomized and deterministic algorithms for a same
problem, and analyze advantages and disadvantages of each one.2,5

R.3 For at least one type of randomized data structure Dr (for instance, skip lists,
randomized binary search trees or treaps) show how each of the supported
operations is performed on Dr.

2

R.4 Derive the expected running time of the operations on a randomized data
structure, or of the execution of a randomized algorithm, as a function of the
number of elements involved.4

• Greedy algorithms:

GA.1 Determine whether or not an algorithm is greedy.1

GA.2 Sketch a proof showing that a greedy algorithm returns the correct solution,
and complete the proof in cases where this proof is similar to a proof the
student has already seen.2,4

GA.3 Develop greedy algorithms for problems where a reasonably straightforward
greedy strategy can be applied successfully.1,3



3

• Dynamic programming:

DP.1 Recognize that an algorithm uses dynamic programming.1

DP.2 Determine the parameters that characterize instances of a given optimization
problem.2,3

DP.3 Select and judge promising types of recurrence relation among the variants seen
in class and on the assignments, by looking at the parameters that characterize
instances of an optimization problem, and use one of them to express the
solution to a problem.2,3,5

DP.4 Transform a recurrence relation for a problem into a dynamic programming
algorithm to solve this problem.3

• NP-completeness:

NP.1 Explain the difference between the classes P and NP.4

NP.2 Write the decision problem corresponding to a given optimization problem,
and vice-versa.4

NP.3 Describe the steps involved in proving that a problem is NP -complete.4,5

NP.4 Explain the implications of NP -completeness on the design of an algorithm to
solve a given problem.2,4,5

NP.5 In cases where a fairly straightforward reduction exists, prove that a specific
problem is NP-Complete.4,5


