Final Topics

CPSC 314

Final Topics (1)

Rendering Pipeline
- Structure, purpose, individual stages

Transformations
- Homogeneous coordinates in 2D and 3D
- Affine transformations
- Perspective and orthographic transformations

Lighting and shading
- Individual lighting models, interaction of lighting with flat, Gouraud, and Phong shading
Final Topics (2)

Clipping
- Line and polygon clipping

Scan Conversion
- Bresenham, DDA for lines
- Scanline-order scan conversion for polygons
- Edge/plane equations for polygons

Final Topics (3)

Texture Mapping
- Texture coordinate interpolation
- Texture minification/magnification, mip-mapping
- Bump-mapping, environment mapping

Sampling
- Nyquist limit, aliasing

Depth Test/Visibility
- Z-buffer, BSP trees

Blending
- Alpha blending
Final Topics (4)

Color
- Black-body radiation, color temperature,
- CIE horseshoe diagram
- Color gamut of a device

Ray Tracing
- Ray tree, ray-object intersections, acceleration data structures

Monte Carlo/Global Illumination
- Basic MC sampling approach
- Examples of global illumination effects

Remember:

One more office hour tomorrow, 2-3
Current Research in CG/Advanced CG Courses at UBC

CPSC 314

3D Graphics

Modeling:
- Representing object properties
 - Geometry: polygons, smooth surfaces etc.
 - Materials: reflection models etc.

Rendering:
- Generation of images from models
 - Interactive rendering
 - Off-line rendering

Animation:
- Making geometric models move and deform
- Fluids and cloth

Visualization
- Use graphics to present abstract data
1) Geometric Modeling Topics

Smooth Geometry
- Use polynomials for object representations
 - One polynomial for whole object: Bezier curves (previous lecture)
 - More interesting: how to join multiple polynomial pieces such that there are no seams
 - Splines, NURBS

Discrete Geometry

Modeling w/ points and triangles
- How do we represent geometry as points or triangles?
- What are good user interfaces that let people quickly create the shape they want
- Can we refine triangle or quadrilateral meshes so that they approximate smooth geometry?
 - Subdivision surfaces
- How do we assign texture coordinates to each vertex to map an image onto triangle geometry?
 - Finding a parameterization for the mesh
Subdivision Surfaces - Octahedron

Subdivision Surfaces - Bunny
Subdivision Surfaces - Bunny

Parameterizing Geometry
Parameterization

- How do we get from here to here?

Venus bust Venus bust with Britney Spears texture
© Wolfgang Heidrich

Parameterization

© Wolfgang Heidrich
Geometric Modeling Courses at UBC

Undergraduate
- CPSC 424: geometric Modeling
 - Mostly deals with smooth curves and surfaces, some topics on meshes
 - Will be taught in January by Alla Sheffer

Graduate
- CPSC 524: Digital geometry Processing
 - Focus on triangle meshes, parameterization, mesh morphing etc.

2) Rendering and Acquisition Topics

Rendering:
- Take scene description and create image

Acquisition:
- Take real-world environment, and extract scene description
 - Geometry
 - Reflection properties
 - Light sources, etc.
Rendering

Problems for offline rendering:
- Efficient sampling strategies for global illumination
- Efficient algorithms for animations
- Simulate new optical effects for which there are no efficient algorithms at the moment

Problems for interactive rendering:
- How can we use global illumination algorithms such as Monte Carlo ray-tracing on GPUs?
- What new features should next generation GPUs have?

Rendering Example:
New Monte Carlo Strategies
Acquisition

Problems:
• How do we scan the geometry of objects?
 – *When material properties are difficult*
 ▪ Glass, other transparent and specular objects
 – *When the geometry is moving/deforming*
 ▪ Cloth, smoke, etc.
• How do we measure the reflection properties of objects?
 – *More realistic representation than just diffuse+Phong*
• Lights? Camera?

Acquisition - Tomography
Rendering & Acquisition Courses

Grad course:

- CPSC 514: Computer Graphics - Rendering
 - Deals with both advanced rendering, and acquisition
 - Won’t be offered next year, but in 2 years
3) Animation Topics

Two sub-areas:

- Character animation
 - Movements of humans, animals
 - Both a question of the physics, and of user interface (how do you specify an animation?)
- Fluids etc.
 - Movement of deforming objects, including fluids, smoke, sand, cloth…
 - Heavy on the numerical analysis side
Fluid Animation

Animation Courses

Undergraduate:
- CPSC 426: Computer animation
 - Overview of animation techniques
 - Not taught next year (it alternates with CPSC424)

Graduate:
- CPSC 526: Computer Graphics: Animation
 - Focus on character animation
 - Not taught this year
- CPSC 533D: Animation Physics (topics course)
 - Also not taught this year
 - INSTEAD: Robert Bridson is teaching a scientific computing course 542G (with heavy graphics applications)
Information Visualization

Problem:
• Map abstract data to visual representations that help people understand the data

Visualization Courses

Graduate:
• CPSC 533C: Information Visualization
 – Taught next year by Tamara Munzner
 – But I don't know which term
Upcoming Lectures

Friday:

- Final