Affine Transformations

CPSC 314

The Rendering Pipeline

- **Geometry Database**
- **Model/View Transform.**
- **Lighting**
- **Perspective Transform.**
- **Clipping**

Geometry Processing

- **Scan Conversion**
- **Texturing**
- **Depth Test**
- **Blending**

Frame-buffer

Rasterization

Fragment Processing
Modeling and Viewing Transformation

Affine transformations

- Linear transformations + translations
- Can be expressed as a 3x3 matrix + 3 vector

\[x' = M \cdot x + t \]

Scaling

Scaling

- a coordinate means multiplying each of its components by a scalar

Uniform scaling

- this scalar is the same for all components:
Scaling

Non-uniform scaling:
- different scalars per component:

\[\begin{align*}
X & \times 2, \\
Y & \times 0.5
\end{align*} \]

how can we represent this in matrix form?

Scaling (2D)

scaling operation:
\[
\begin{pmatrix}
x' \\
y'
\end{pmatrix} = \begin{pmatrix}
a & 0 \\
b & 0
\end{pmatrix} \cdot \begin{pmatrix}
x \\
y
\end{pmatrix}
\]

or, in matrix form:
\[
\begin{pmatrix}
x' \\
y'
\end{pmatrix} = \begin{pmatrix}
a & 0 \\
0 & b
\end{pmatrix} \cdot \begin{pmatrix}
x \\
y
\end{pmatrix}
\]

scaling matrix
Scaling (3D)

scaling operation:

\[
\begin{pmatrix}
 x' \\
 y' \\
 z'
\end{pmatrix} =
\begin{pmatrix}
 ax \\
 by \\
 cz
\end{pmatrix}
\]

or, in matrix form:

\[
\begin{pmatrix}
 x' \\
 y' \\
 z'
\end{pmatrix} =
\begin{pmatrix}
 a & 0 & 0 \\
 0 & b & 0 \\
 0 & 0 & c
\end{pmatrix}
\begin{pmatrix}
 x \\
 y \\
 z
\end{pmatrix}
\]

2D Rotation From Trig Identities

Trig Identity…
\[
x' = r \cos(\phi + \theta) - r \sin(\phi) \sin(\theta)
\]
\[
y' = r \sin(\phi + \theta) + r \cos(\phi) \sin(\theta)
\]

Substitute…
\[
x' = x \cos(\theta) - y \sin(\theta)
\]
\[
y' = x \sin(\theta) + y \cos(\theta)
\]
2D Rotation Matrix

Easy to capture in matrix form:

\[
\begin{pmatrix}
 x' \\
 y'
\end{pmatrix}
= \begin{pmatrix}
 \cos(\theta) & -\sin(\theta) \\
 \sin(\theta) & \cos(\theta)
\end{pmatrix}
\begin{pmatrix}
 x \\
 y
\end{pmatrix}
\]

Even though sin(q) and cos(q) are nonlinear functions of q,

- \(x' \) is a linear combination of \(x \) and \(y \)
- \(y' \) is a linear combination of \(x \) and \(y \)

3D Rotation

- **About x axis:**
 \[
 \begin{pmatrix}
 x' \\
 y' \\
 z'
\end{pmatrix}
= \begin{pmatrix}
 1 & 0 & 0 \\
 0 & \cos(\theta) & -\sin(\theta) \\
 0 & \sin(\theta) & \cos(\theta)
\end{pmatrix}
\begin{pmatrix}
 x \\
 y \\
 z
\end{pmatrix}
\]

- **About y axis:**
 \[
 \begin{pmatrix}
 x' \\
 y' \\
 z'
\end{pmatrix}
= \begin{pmatrix}
 \cos(\theta) & 0 & \sin(\theta) \\
 0 & 1 & 0 \\
 -\sin(\theta) & 0 & \cos(\theta)
\end{pmatrix}
\begin{pmatrix}
 x \\
 y \\
 z
\end{pmatrix}
\]

- **About z axis:**
 \[
 \begin{pmatrix}
 x' \\
 y' \\
 z'
\end{pmatrix}
= \begin{pmatrix}
 \cos(\theta) & -\sin(\theta) & 0 \\
 \sin(\theta) & \cos(\theta) & 0 \\
 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
 x \\
 y \\
 z
\end{pmatrix}
\]
Shear

Shear along x axis

• push points to right in proportion to height

\[
\begin{pmatrix}
x' \\
y'
\end{pmatrix} = \begin{pmatrix}
? & ? \\
? & ?
\end{pmatrix} \cdot \begin{pmatrix}
x \\
y
\end{pmatrix}
\]
Reflection

Reflect across x axis

- Mirror

\[
\begin{pmatrix}
 x' \\
 y'
\end{pmatrix} = \begin{pmatrix}
 ? & ? \\
 ? & ?
\end{pmatrix} \cdot \begin{pmatrix}
 x \\
 y
\end{pmatrix}
\]

Reflection

Reflect across x axis

- Mirror

\[
\begin{pmatrix}
 x' \\
 y'
\end{pmatrix} = \begin{pmatrix}
 1 & 0 \\
 0 & -1
\end{pmatrix} \cdot \begin{pmatrix}
 x \\
 y
\end{pmatrix}
\]

© Wolfgang Heidrich
Affine Transformations

Translation:
- Add a constant (2D or 3D) vector:

\[
\begin{pmatrix}
 x' \\
 y'
\end{pmatrix}
= \begin{pmatrix}
 1 & 0 \\
 0 & 1
\end{pmatrix}
\begin{pmatrix}
 x \\
 y
\end{pmatrix}
+ \begin{pmatrix}
 t_x \\
 t_y
\end{pmatrix}
\]

Compositing of Linear and Affine Transformations

Example: 3D rotation around arbitrary axis
- Rotate axis to z-axis
- Rotate by \(\phi \) around z-axis
- Rotate z-axis back to original axis
- Composite transformation:

\[
R(v, \phi) = R_z^{-1}(\alpha) \cdot R_y^{-1}(\beta) \cdot R_z(\phi) \cdot R_y(\beta) \cdot R_z(\alpha)
\]

\[
= (R_y(\beta) \cdot R_z(\alpha))^{-1} \cdot R_z(\phi) \cdot (R_y(\beta) \cdot R_z(\alpha))
\]
Compositing of Linear and Affine Transformations

In general:
- Transformation of geometry into coordinate system where operation becomes simpler
- Perform operation
- Transform geometry back to original coordinate system

Example: Rotation around arbitrary center
Compositing of Affine Transformations

Example: Rotation around arbitrary center

- Step 1: translate coordinate system to rotation center

Example: Rotation around arbitrary center

- Step 2: perform rotation
Compositing of Affine Transformations

Example: Rotation around arbitrary center

- Step 3: back to original coordinate system

Composite transformation:

- Is again an affine transformation

\[
x' = \text{Id} \cdot (R(\phi) \cdot (\text{Id} \cdot x + t)) - t
\]

\[
= \text{Id} \cdot (R(\phi) \cdot x + R(\phi) \cdot t) - t
\]

\[
= R(\phi) \cdot x + (R(\phi) \cdot t - t)
\]

\[
= R(\phi) \cdot x + t'
\]
Properties of Affine Transformations

Definition:
- A *linear combination* of points or vectors is given as
 \[x = \sum_{i=1}^{n} a_i \cdot x_i, \text{ for } a_i \in \mathbb{R} \]
- An affine combination of points or vectors is given as
 \[x = \sum_{i=1}^{n} a_i \cdot x_i, \text{ with } \sum_{i=1}^{n} a_i = 1 \]

Example:
- Affine combination of 2 points
 \[x = a_1 \cdot x_1 + a_2 \cdot x_2, \text{ with } a_1 + a_2 = 1 \]
 \[= (1 - a_2) \cdot x_1 + a_2 \cdot x_2 \]
 \[= x_1 + a_2 \cdot (x_2 - x_1) \]
Properties of Affine Transformations

Definition:
- A convex combination is an affine combination where all the weights a_i are positive
- Note: this implies $0 \leq a_i \leq 1, \ i=1\ldots n$

Example:
- Convex combination of 3 points
 \[x = \alpha \cdot x_1 + \beta \cdot x_2 + \gamma \cdot x_3 \]
 with $\alpha + \beta + \gamma = 1, \ 0 \leq \alpha, \beta, \gamma \leq 1$
- α, β, and γ are called *barycentric coordinates*
Properties of Affine Transformations

Theorem:
• The following statements are synonymous
 – A transformation $T(x)$ is affine, i.e.:
 $$x' = T(x) := M \cdot x + t,$$
 for some matrix M and vector t
 – $T(x)$ preserves affine combinations, i.e.
 $$T\left(\sum_{i=1}^{n} a_i \cdot x_i\right) = \sum_{i=1}^{n} a_i \cdot T(x_i), \text{ for } \sum_{i=1}^{n} a_i = 1$$
 – $T(x)$ maps parallel lines to parallel lines

Properties of Affine Transformations

Preservation of affine combinations:
• Can compute transformation of every point on line or triangle by simply transforming the control points
Affine Transformations And Homogeneous Coordinates

Homogeneous Coordinates

Homogeneous representation of points:
- Add an additional component \(w = 1 \) to all points
- All multiples of this vector are considered to represent the same 3D point
- Use square brackets (rather than round ones) to denote homogeneous coordinates (different from text book!)

\[
\begin{bmatrix}
 x' \\
 y' \\
 z'
\end{bmatrix}
= \begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix}
= \begin{bmatrix}
 x \\
 y \\
 z \\
 w
\end{bmatrix}
= \begin{bmatrix}
 x' \\
 y' \\
 z' \\
 w
\end{bmatrix}, \forall w \neq 0
\]
Geometrically In 2D

Cartesian Coordinates:

Homogeneous Coordinates:
Homogeneous Matrices

Affine Transformations

\[
\begin{bmatrix}
x' \\
y' \\
z' \\
1
\end{bmatrix} =
\begin{bmatrix}
m_{1,1} & m_{1,2} & m_{1,3} & 0 \\
m_{2,1} & m_{2,2} & m_{2,3} & 0 \\
m_{3,1} & m_{3,2} & m_{3,3} & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\cdot
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
+
\begin{bmatrix}
t_x \\
t_y \\
t_z \\
0
\end{bmatrix}
\]

Homogeneous Matrices

Combining the two matrices into one:

\[
\begin{bmatrix}
x' \\
y' \\
z' \\
1
\end{bmatrix} =
\begin{bmatrix}
m_{1,1} & m_{1,2} & m_{1,3} & t_x \\
m_{2,1} & m_{2,2} & m_{2,3} & t_y \\
m_{3,1} & m_{3,2} & m_{3,3} & t_z \\
0 & 0 & 0 & 1
\end{bmatrix}
\cdot
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
\]
Homogeneous Matrices

Note:
- Multiplication of the matrix with a constant does not change the transformation!

$$\tilde{T} = \begin{pmatrix} x' \\ y' \\ z' \\ 1 \end{pmatrix} = T \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

Homogeneous Vectors

Earlier discussion describes points only
- What about vectors (directions)?
- What is the affine transformation of a vector?
 - Rotation
 - Scaling
 - Translation

Vectors are invariant under translation!
Homogeneous Vectors

Representing vectors in homogeneous coordinates

- Need representation that is only affected by linear transformations, but not by translations
- This is achieved by setting $w=0$

\[
T \begin{bmatrix} x \\ y \\ z \\ 0 \end{bmatrix} = \begin{bmatrix} m_{1,1} & m_{1,2} & m_{1,3} & t_x \\ m_{2,1} & m_{2,2} & m_{2,3} & t_y \\ m_{3,1} & m_{3,2} & m_{3,3} & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix}
\]

Homogeneous Coordinates

Properties

- Unified representation as 4-vector (in 3D) for
 - Points
 - Vectors / directions
- Affine transformations become 4x4 matrices
 - Composing multiple affine transformations involves simply multiplying the matrices
 - 3D affine transformations have 12 degrees of freedom
 - Need mapping of 4 points to uniquely define transformation

© Wolfgang Heidrich
The Rendering Pipeline

Modeling Transformation

Purpose:
- Map geometry from local object coordinate system into a global world coordinate system
- Same as placing objects

Transformations:
- Arbitrary affine transformations are possible
 - Even more complex transformations may be desirable, but are not available in hardware
 - Freeform deformations
Viewing Transformation

Purpose:
- Map geometry from *world coordinate system* into *camera coordinate system*
- Camera coordinate system is *right-handed*, viewing direction is *negative z-axis*
- Same a placing camera

Transformations:
- Usually only *rigid body transformations*
 - Rotations and translations
- Objects have same size and shape in camera and world coordinates

Model/View Transformation

Combine modeling and viewing transform.

- Combine both into a single matrix
- Saves computation time if many points are to be transformed
- Possible because the viewing transformation directly follows the modeling transformation without intermediate operations
Homogeneous Planes And Normals

Planes in Cartesian Coordinates:
\[(x, y, z)^T | n_x x + n_y y + n_z z + d = 0\]
- \(n_x, n_y, n_z, \) and \(d\) are the parameters of the plane (normal and distance from origin)

Planes in Homogeneous Coordinates:
\[[x, y, z, w]^T | n_x x + n_y y + n_z z + dw = 0\]

Homogeneous Planes And Normals

Planes in homogeneous coordinates are represented as row vectors
- \(E = [n_x, n_y, n_z, d]\)
- Condition that a point \([x, y, z, w]^T\) is located in \(E\)
\[
\begin{bmatrix}
 x \\
 y \\
 z \\
 w
\end{bmatrix}
\in E = [n_x, n_y, n_z, d] \Leftrightarrow [n_x, n_y, n_z, d] \cdot
\begin{bmatrix}
 x \\
 y \\
 z \\
 w
\end{bmatrix} = 0
\]
Homogeneous Planes And Normals

Transformations of planes

\[
\begin{bmatrix}
x' \\
y' \\
z' \\
w'
\end{bmatrix} = 0 \iff T(\begin{bmatrix} n_x, n_y, n_z, d \end{bmatrix}) \cdot (A \cdot \begin{bmatrix}
x \\
y \\
z \\
w
\end{bmatrix}) = 0
\]

- Works for \(T([n_x, n_y, n_z, d]) = [n_x, n_y, n_z, d]A^{-1} \)
- Thus: planes have to be transformed by the inverse of the affine transformation (multiplied from left as a row vector)!
Homogeneous Planes And Normals

Homogeneous Normals
- The plane definition also contains its normal
- Normal written as a vector \([n_x, n_y, n_z; 0]^T\)

\[
\begin{pmatrix}
 n_x \\
 n_y \\
 n_z \\
 0
\end{pmatrix} \cdot \begin{pmatrix}
 v_x \\
 v_y \\
 v_z \\
 0
\end{pmatrix} = 0 \iff (\mathbf{A}^{-T} \cdot \begin{pmatrix}
 n_x \\
 n_y \\
 n_z \\
 0
\end{pmatrix} \cdot (\mathbf{A} \cdot \begin{pmatrix}
 v_x \\
 v_y \\
 v_z \\
 0
\end{pmatrix})) = 0
\]

- Thus: the normal to any surface has to be transformed by the inverse transpose of the affine transformation (multiplied from the right as a column vector)!

Transforming Homogeneous Normals

Inverse Transpose of
- Rotation by \(\alpha \)
 - Rotation by \(\alpha \)
- Scale by \(s \)
 - Scale by \(1/s \)
- Translation by \(t \)
 - Identity matrix!
- Shear by \(a \) along x axis
 - Shear by \(-a \) along y axis
Coming Up...

Monday, May 15:
- Perspective transformations, matrix stacks

Wednesday, May 17:
- More on hierarchical transformations, Lighting