
CPSC 314 Assignment 5: Shaders, Texture Mapping,
and Basic Lighting

Out: Tue November 13, 2018
Due: Tue November 27, 2018

[24 marks total; worth 8%]

1. The objective of this coding question is to gain hands-on experience with vertex shaders,
fragment shaders, texture mapping, and lighting. See the course web pages for the
starting template.

The code runs in the browser and can thus be run by opening a5.html. You will need
to enable local file access, as you did for Assignment 1, and as described here: https://
threejs.org/docs/#manual/en/introduction/How-to-run-things-locally. Also,
see https://www.shaderific.com/glsl-functions/ for a good summary of GLSL
functions.

The template code comes with the following keybindings:
a,d,w,s: moves the light source to the left, right, up, and down

You will be making changes to the javascript, a5.js, and the various vertex and fragment
shaders in the HTML file, a5.html. After making edits, a page reload on your browser
will then run your code again. Error messages will be displayed on the javascript console.
Debugging shaders and their compilation errors can be tricky, and so we recommend
testing your code after every change. Something as simple as a missing semicolon
in the shader code requires some effort to find. Always look at the development console
to understand the problems. Scroll to the top to find the line number of the first error
encountered.

Lighting computations are best done in VCS, i.e., eye or camera coordinates. Note that
the shading language allows for component-wise multiplication using a statement such
as: vec4 c = a*b;, where a and b are also of type vec4.

1



CPSC 314 Assignment 5

(a) (1 point) Observe the carpet texture while rotating the scene. Note some of the
artifacts of the rendered texture, particularly when seen at glancing angles. Change
the a5.js code to use a better filter. To see a list of the available three.js /

WebGL filters, look at threejs.org -> Documentation -> Textures -> Texture

and look at the .minFilter texture constants that can be assigned.

(b) (3 points) One of the faces of a small skybox is already in place, the posx face.
Complete the construction of the skybox for the other 5 faces using similar code.
First simply focus on getting them into the right positions. Then you can exper-
iment with different rotations to get these faces properly oriented. Note that the
second page of the lab notes on environment mapping provides diagrams of the
correct orientation of the image for each face, where (u,v) correspond to the (x,y)
axes of the image. For the assembly, use the current size=10, and spin the camera
around the outside to ensure that all the images join correctly (continuously) at the
edges. Once you have all the pieces in place, change to size=1000.

(c) (4 points) We’ll now be making changes to the fragment shaders, beginning with
the yellow torus. First, let’s add some parameters that can be set from javascript,
via a uniform variable. As defined on the javascript side, the toonMaterial def-
inition defines two uniforms: lightPosition and myColor. Add these to the
toonShader code as uniforms, i.e., uniform vec3 lightPosition; and uniform

vec3 myColor;. Uniform variables are used to pass constant variables to shaders.

Now set the fragment color to myColor. Because gl FragColor is vec4, you’ll need
to use something like gl FragColor = vec4(myColor,1.0); which will append a
fourth opacity value of 1.0 to the color. Verify the results.

Next, we’ll implement a simple diffuse shading model, given by i = N · L. First,
compute a normalized vec3 L that points towards the light source. Note that the
location of the current surface point, in VCS, is given by vcsPosition, and the
eye is at (0,0,0) in VCS. Next, compute a normalized version of the VCS normal.
Compute a dot product of these two quantities to give a scalar intensity i. Now
use this intensity to multiply myColor to give a diffuse-shaded torus of the right
color. Verify that the diffuse lighting follows the light source as you move it using
the keypresses given above.

Finally, change your shader to a toon shader (another name for ’cartoon’ shader).
These use only a small number of colors to render the image. A simple way to
achieve this is to discretize the intensity to one of five values, i.e., i = 0, 0.25, 0.5, 0.75, 1.
This can be done with a combination of multiplications, divisions, and the floor
function, which rounds down, i.e., floor(3.22) = 3.0.

Page 2 of 4



CPSC 314 Assignment 5

(d) (4 points) Use a copy of your toonShader (perhaps without the final “toon” part)
to create a diffuse-shading starting point for your holeyShader shader. This new
shader will procedurally generate holes in the object being rendered. First, learn
how to discard a fragment based on its position (both object and VCS coordinates
are available via varying types). For example, if the position lies within a sphere
of a certain radius, the use of if (condition) discard; will create a visible hole.
Next, use the floor function to help create an implicit function that defines a reg-
ular 3D grid of spheres, i.e., via the use of the fractional coordinates. This should
produce rendered surfaces full of holes. Hint:
dx = x - floor(x+0.5); dy = y - floor(y+0.5); dz = z - floor(z+0.5);

r2 = dx*dx+dy*dy+dz*dz;

computes the square of the radial-distance to the nearest integer x,y,z 3D grid lo-
cation. You may want to scale x,y,z by some constant before doing this computation
in order to get a grid spacing that you like.

(e) (4 points) Complete the floorFragShader so that it applies a given normal map to
give the floor a bumpy appearance. First, view the the file image/stone-map.png.
Each texel in the normal map stores the (Nx, Ny, Nz) components of a unit normal
using the (r, g, b) values. Because Nx, Ny, Nz ∈ [−1, 1] and r, g, b ∈ [0, 1], the
normals are stored according to r = (Nx + 1)/2, g = (Ny + 1)/2, b = (Nz + 1)/2.
Thus first, extract the texture map normals by doing a normal-map texture lookup,
and undoing the transformation just described. To verify that these are being
computed correctly, visualize the normals by directly using these as the fragment
color. Note that negative values will be clipped to zero. Next, we need to transform
the normals because the normal-map assumes that the surface to be rendered lies
in the xy-plane, i.e., that the default normals are in the +z direction. However, in
our scene, y is up. Thus, you will want to compute a 90-degree rotated version of
the normals so that y is up. [advanced-topics note: usually this transformation is
done by specifying a full coordinate frame using tangents and bitangents]. Then
compute the lighting direction, L using the known VCS lightPosition and the
current surface point vcsPosition. Compute a simple diffuse lighting using N.L.
Lastly, use the diffuse lighting to scale the standard texture map color. This will
give a surface that still retains the texture map colors while having visible bumps
as specified by the normal map.

(f) (3 points) Complete the envmapFragShader that implements a basic reflective en-
vironment map shader. This is used to shade the Armadillo, the sphere, and the
square mirror on the floor. Begin your shader by handling rays that exit the top of
the skybox. I.e., the top of the skybox should be visibly reflected off the top of the
sphere. For the time being, the remainder of the fragments can be rendered with a
constant-color default.

First, compute the incident ray direction, in VCS. This is given by the vcsPosition
and the eye position, which is at the origin of VCS. A reflected ray can be computed
directly as follows: R = reflect(I,N), where the reflect() function is provided
for you in the GLSL shading language. Next, we need to know the reflected vec-

Page 3 of 4



CPSC 314 Assignment 5

tor in world coordinates in order to do the texture lookup. A multiplication by
matrixWorld achieves this. GLSL directly supports matrix multiplication, i.e.,
newvec = matrix*vec. Lastly, if the positive y component is the largest compo-
nent of the reflected vector, then it will exit through the top plane of the cube.
So, for this case, the u and v coordinates should then be computed; see the lab
notes on this. The texture color can be retrieved using texture2D(uPosyTexture,

vec2(u,v)). This texture color is then directly used as the fragment color. When
debugging, it may be useful to replace the posyTexture specified in a5.js with the
image ABCD.jpg, whose orientation is easier to determine.

(g) (3 points) Complete envmapFragShader for the remaining faces.

(h) (2 points) Procedural shaders can use computation to produce image complexity
with a very compact model and without texture map images. The pnoiseFragShader
in the template code implements Perlin noise. Here our goal will mainly be to briefly
experiment with it. (i) The given version uses object coordinates to index the noise,
and thus the noise stays fixed to the object when the scene is rotated. Change this
to use the vcsPosition. What happens when the scene is rotated? Add your
answer as a comment in the code. (ii) Change the fragment color so that it uses a
hard-threshold on the colour, using a final color given as follows:
float j=floor(i+0.9); gl FragColor = vec4(j,j,0.3,1.0);. (iii) What is the
result of using more levels, i.e., levels=5 ? Add your answer as a comment in the
code.

(i) (4 points) Optional bonus Develop an idea of your own for augmenting the
scene. Possible ideas include: create a procedural, animated normal map that cre-
ates virtual ripples on an object; create “puddles” of water by discarding fragments
in the Perlin noise shader, and using environment map computations for the non-
discarded fragments; animated object motion; your own ideas! The instructors and
TAs will not respond to any questions that ask us to define this more precisely.

Submit your code using handin cs314 a5.
Include a README.txt file that contains your name, your student number, and any
comments and explanations that you wish to include.

Page 4 of 4


