LIGHTING:
A FEW ADDITIONAL CONCEPTS

SHADOW MAPPING
Usually used with projective rendering

http://adrien.io/opengl-course/lesson-3-shadow-mapping/

(1) render scene from light source; store the z-buffer
(2) render scene from camera view; p is in shadow if d_light > d_blocker

Issues: resolution of the shadow map image? No soft shadows.
AMBIENT OCCLUSION

Assume that light is coming from all directions. For a given point, compute the area of the surrounding hemisphere that is open. Precompute and store this.

“RADIOSITY” METHOD FOR GLOBAL ILLUMINATION

Form factor F_{ij}: Fraction of light leaving surface i and arriving at surface j. This depends on the shape, distance, orientation, and relative occlusions of the two surface patches.

Solve a set of simultaneous linear equations for the unknown energies.

Assumes all surfaces are Lambertian, i.e., diffuse. Requires subdivision of scene into patches. The n^2 form factors are expensive to compute.

Radiosity: A ray of light that hits a surface is reflected by multiple diffuse rays, which can themselves illuminate other surfaces. Surfaces are subdivided to increase accuracy of the solution.
LIGHT BAKING

- precompute and “bake” into texture:
 static lighting of diffuse surfaces

[https://blogs.unity3d.com/2017/03/31/]

PHOTON MAPPING

- trace light paths, “photons”, forward into scene, until they strike a diffuse surface.
- store locations and incoming directions of photons on the diffuse surface.
- efficient rendering of “caustics”
PATHTRACING

- global illumination
- trace paths from eye into scene
- Monte-Carlo sampling of directions
- multiple diffuse bounces
- average many sample rays per pixel
- “noisy” images with few samples
 - ML with deep nets to remove noise

RAY TRACING VS PATH TRACING

- Global illumination algorithms
- Rays emitted FROM camera

- Ray Tracing
 - Single ray per pixel
 - Supports indirect lighting only from specular surfaces
 - No color bleeding
 - Shoots shadow rays to compute direct illumination
 - Soft shadows are harder to get

- Path Tracing (*may produce renders indistinguishable from photos*)
 - Many rays per pixel, their color averaged
 - At each interaction, ray direction changes randomly with some distribution
 - No difference between light sources and objects
 - Soft shadows, complex materials, etc.
 - Supports all sorts of indirect lighting
COURSE SUMMARY

• affine transformations: change-of-basis, trans/rot/scale, composition
• view frustum, projection transformations, homogeneous coordinates
• explicit / implicit / parametric representations
• scan conversion, barycentric coordinates, interpolation using shaders
• clipping, view-frustum culling, back-face culling, occlusion culling, z-buffer visibility
• texture mapping, MIPMAPs, cubemaps, procedural textures
• Phong local illumination, raytracing, physically-based rendering
• shadow maps, ambient occlusion, photon mapping, path tracing
• WebGL: three.js + GLSL shaders

LEARNING MORE

• CPSC 426: Computer Animation (Jan) [Michiel van de Panne]
 • motion notation systems, keyframing, interpolating splines
 • representing orientations, quaternions
 • characters: inverse kinematics, rigging / skinning
 • physics-based animation: particles, cloth, fluids, rigid-body motion, characters
 • data-driven animation: motion capture, motion warping, ML
 • visual effects production, facial animation, game animation
• CPSC 424: Geometric Modeling (2019/20) [Alla Sheffer]
• Directed Studies
• Graduate School
• online / books / projects / …
FUTURE OF GRAPHICS

• 3D content creation by all
• better capture: omnidirectional, HDR, 3D geometry
• ML in many places
• VR/AR/MR
• physics-based human models with movement skills
• ever more photorealism

FINAL EXAM

• Mon Dec 17, 12:00pm, 2.5h: LIFE 2201 (unofficial)
• covers all topics
• closed book

• will post practice questions for physically-based rendering
• will post old final exams
• will post extra office hours
HAPPY HOLIDAYS !