LIGHTING / “SHADING”
Models the interaction of light with surfaces. Generates a per (pixel/vertex) colour.

FACTORS:
• Light sources
 • Location, type & color
• Surface materials
 • How surfaces reflect light
• Transport of light
 • How light moves in a scene
• Viewer position

• How can we do this in the pipeline?
THE RENDERING PIPELINE

Vertices and attributes
- Modelview transform
- Per-vertex attributes

Vertex Shader

Rasterization
- Scan conversion
- Interpolation

Per-Sample Operations
- Depth test
- Blending

Fragment Shader
- Texturing/...
- Lighting/shading

Vertex Post-Processing
- Viewport transform
- Clipping

Framebuffer
ILLUMINATION MODELS/ALGORITHMS

Local illumination – Fast
- assumes single-bounce path: light – surface – eye

Global illumination – Slow
- (More) Physically based computation of light transport throughout the scene
THE BIG PICTURE

• Light: energy in a range of wavelengths
 • White light – all wavelengths
 • Colored (e.g. red) – subset of wavelengths
• Surface “color” – reflected wavelength
 • White – reflects all lengths
 • Black – absorbs everything
 • Colored (e.g. red) absorbs all but the reflected color
• Multiple light sources add (energy sums)

• big simplification: just work with three “wavelengths”: R,G,B
 which roughly correspond to the three types of cone-cells in the human eye.
 • white light (1,1,1) x yellow surf (0.8,0.8,0) = yellow visible (0.8,0.8,0)
 • yellow light (1,1,0) x cyan surf (0,1,1) = green visible(0,1,0)
MATERIALS

• Surface reflectance:
 • Illuminate surface point with a ray of light from different directions
 • How much light is reflected in each outgoing direction?
BIDIRECTIONAL REFLECTANCE DISTRIBUTION MODEL

• How much light is reflected in every outgoing direction for each possible incoming direction of light?

BRDF of spray-painted latex blue paint, Pratt & Lambert, Vapex
Interior Wall Base 1, Color #1243, Cal.III.
http://www.graphics.cornell.edu/online_measurements/reflectance/housepaints/
PHONG MODEL

\[I_a k_a + \sum_{L} I_L k_d (N \cdot L) + I_L k_s (R \cdot V)^n \]

- ambient + diffuse + specular = total

Widely used; you will implement this!

Named after Phong, who developed the model for the specular term.
AMBIENT TERM

- simple hack that provides a default minimal illumination

\[I_a k_a + \sum_{L} I_L k_d (N \cdot L) + I_L k_s (R \cdot V)^n \]

scene property: ambient light color

surface property: ambient color

apply individually to RGB components

<table>
<thead>
<tr>
<th>I</th>
<th>I_a</th>
<th>k_a</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>1</td>
<td>0.2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

see: http://www.realtimerendering.com/teapot/
DIFFUSE TERM

\[I_a k_a + \sum_{L} I_L k_d (N \cdot L) + I_L k_s (R \cdot V)^n \]

Intuition: Brightness depends on the angle of the surface with respect to the incoming light direction. Sharper angles mean that the surface receives less light.

\[N \cdot L = \cos(\theta) \]

only consider angles from 0-90, i.e., if N.L negative, then set to zero

N, L should be normalized!
DIFFUSE TERM

The apparent brightness (the reflected radiance) is *independent* of the viewing direction.

Two correct interpretations:

![Diagram showing reflected radiance and reflected intensity](http://www.oceanopticsbook.info/view/surfaces/lambertian_brdfs)
Many surfaces are not perfect mirrors, but still reflect much light in the general direction of the reflected ray. As we get further away from the reflected ray, we see less light being reflected in those directions.
SPECULAR TERM: COMPUTATIONS

• Geometry of specular (perfect mirror) reflection
 • Snell’s law
 • In GLSL: use \textit{reflect}(-l,n)

\[
egin{align*}
\mathbf{N} & \perp \mathbf{L} \\
\mathbf{R} & = -\mathbf{L} + 2(\mathbf{N} \cdot \mathbf{L})\mathbf{N} \\
\theta & \approx N \cdot L \\
\end{align*}
\]
The Phong specular term is an empirical model, i.e., not physics-based.

It generally produces a “plastic” appearance.
ALTERNATIVE: BLINN-PHONG MODEL

(Jim Blinn, 1977)

• Variation with better physical interpretation
 • h: halfway vector; r: roughness

\[
I_{specular} = k_s \cdot (h \cdot n)^{1/r} \cdot I_{light} \quad \text{; with} \quad h = (l + v) / 2
\]
LIGHT SOURCE TYPES

- **Point Light**
 - light originates at a point
 - defined by `location` only

- **Directional Light (point light at infinity)**
 - light rays are parallel
 - Rays hit a planar surface at identical angles
 - defined by `direction` only

- **Spot Light**
 - point light with limited angles
 - defined by `location`, `direction`, and `angle range`

- **Light source fall-off:** intensity drops with distance squared
WHICH LIGHTS/MATERIALS ARE USED HERE?
LIGHT AND MATERIAL SPECIFICATION

• Light source: amount of RGB light emitted
 • value = intensity per channel
 e.g., (1.0,0.5,0.5)
 • every light source emits ambient, diffuse, and specular light

• Materials: amount of RGB light reflected
 • value represents percentage reflected
 e.g., (0.0,1.0,0.5)

• Interaction: multiply components
 • Red light (1,0,0) x green surface (0,1,0) = black (0,0,0)
NOTES ON SHADING

• Typically compute lighting model in VCS. Therefore need:
 • VCS Vertex Coordinates, VCS Normals, VCS Light Positions

• How often to compute the lighting model?

per polygon

per vertex, then interpolate colors

per pixel, using interpolated normals

flat shading
“Gouraud shading”
per-pixel shading

Image © Intergraph Computer Systems
GLOBAL ILLUMINATION
SUBSURFACE SCATTERING
QUESTIONS

• What do we see when a yellow surface is lit with:
 (a) white light?
 (b) blue light?
 (c) red light?
 (d) yellow light?
 (e) green light?

• Do specular highlights have the colour of the light or the surface?
QUESTIONS

• Give the Phong equation parameters that are needed to render a shiny yellow material with a single white light.

\[I = I_a k_a + I_L k_d (N \cdot L) + I_L k_s (R \cdot V)^n \]

• What is the colour of the darkest pixel this model can produce?

• What is the colour of the brightest pixel this model can produce?