
TEXTURE MAPPING

2

TEXTURE MAPPING
•  real life objects have nonuniform

colors, normals
•  to generate realistic objects,

reproduce coloring & normal
variations = texture

•  can often replace complex
geometric details

TEXTURE MAPPING
• hide geometric simplicity

•  images convey illusion of geometry
•  map a brick wall texture on a flat polygon
•  create bumpy effect on surface

• usually: 2D information associated with a 3D surface

•  point on 3D surface ↔ point in2D texture
•  typically r,g,b colors
•  but can be any attributes that you would like to model over a surface

BUMP MAPS

threejs.org:		materials/bumpmap			

2D	texture	maps	that	are	used	to	model	the	appearance	of	surface	bumps,	
by	adding	small	perturba=ons	to	the	surface	normals.		The	rendered	geometry	
does	not	actually	have	bumps,	i.e.,	it	is	smooth	!!	

VOLUMETRIC TEXTURES
• model r,g,b for every point in a volume
• often computed using procedural function

[Lapped	Solid	Textures,		SIGGRAPH	2008]	

ENVIRONMENT MAP

2	of	6	images	for	a	cube	map;	
as	a	viewer,	you	are	inside	this	cube!	

There	is	an	invisible	corner	seam	in	this	image!	

BASIC TEXTURE MAP

u	

v	

(0,0)	 (1,0)	

(0,1)	

2D	texture	map:		Image	
Pixels	here	are	called	“texels”	

(1,1)	

P(3,3,0)	
T(1,1)	

P(3,0,0)	
T(1,0)	

P(0,0,0)	
T(0,0)	

3D	model:	
u,v	texture	coodinates	
are	assigned	to	ver=ces	
by	ar=st	or	program.	

rendered	image	

interp	

interpolate	(u,v)	from	ver=ces	
using	barycentric	coordinates	

T(1,0)	

T(1,1)	

T(0,0)	

TEXTURE MAPPING EXAMPLE

+ =

TEXTURE LOOKUP:
TILING AND CLAMPING

• What if s or t is outside [0…1] ?
• Multiple choices, e.g.:

•  tex1.wrapS = THREE.RepeatWrapping
•  tex1.wrapS = THREE.ClampToEdgeWrapping
•  tex1.wrapS = THREE.MirroredRepeatWrapping

TEXTURES: VERTEX SHADER &
FRAGMENT SHADER

•  javascript: texture is passed as a “uniform” to the fragment shader:
(slightly more complex than this due to async image load in js)

var	myTexture	=	new	THREE.TextureLoader().load('textures/crate.gif');	
myTexture.wrapS	=	THREE.RepeatWrapping;	
var	material	=	new	THREE.MeshBasicMaterial({	map:	myTexture	});
•  vertex shader
attribute	vec2	uv;	
varying	vec2	uvCoords;	
uvCoords	=	uv;
•  Fragment Shader:

uniform	sampler2D	myTexture;	
varying	vec2	uvCoords;	
vec4	texColor	=	texture2D(myTexture,	uvCoords);	
gl_FragColor	=	texColor;	
	

	

	

RECONSTRUCTION
•  how to deal with:

•  pixels that are much larger than texels?
•  minification

•  pixels that are much smaller than texels ?
•  magnification

MIPMAPPING

Without MIP-mapping

With MIP-mapping

use “image pyramid” to precompute
averaged versions of the texture

MIPMAPS
•  multum in parvo -- many things in a small place

•  prespecify a series of prefiltered texture maps of decreasing resolutions
•  requires more texture storage
•  avoid shimmering and flashing as objects move

e.g.:
 texture.magFilter = THREE.NearestFilter;  
 texture.minFilter THREE.LinearMipMapLinearFilter;

without with

BUMP MAPPING: NORMALS AS TEXTURE
•  object surface often not smooth – to recreate correctly need

complex geometry model
•  can control shape “effect” by locally perturbing surface normal

•  random perturbation
•  directional change over region

BUMP MAPPING
virtual	surface		
created	with	the	bump	map	

normals	corresponding	to	this	
virtual	surface	

Normal/Bump mapping

BUMP MAPPING: LIMITATION

DISPLACEMENT MAPPING

• bump mapping gets silhouettes wrong
•  shadows wrong too

•  change surface geometry instead
•  need to subdivide surface
•  use tesselation shader

hVps://en.wikipedia.org/wiki/
Displacement_mapping#/media/
File:Displacement.jpg	

ENVIRONMENT MAPPING
• generate image of surrounding or reflection
•  sphere map or cube map

CUBE MAP
• 6 planar textures, sides of cube

•  point camera in 6 different directions, facing out from origin

•  Cube map: direction of vector selects the face of the cube to be indexed
•  co-ordinate with largest magnitude

•  e.g., the vector (-0.2, 0.5, -0.84) selects the –Z face
•  remaining two coordinates select the pixel from the face.

eye	

image	
plane	

N	 reflected	
ray	

B	

A	

B	

A	
note:		viewpoint	is	
always	at	the	center!	

SPHERE MAP
•  texture is distorted fish-eye view

•  point camera at mirrored sphere
•  spherical texture mapping creates texture coordinates that

correctly index into this texture map

VOLUMETRIC TEXTURE
•  define texture pattern over 3D domain - 3D

space containing the object
•  texture function can be digitized or

procedural
•  for each point on object compute texture

from point location in space
•  e.g., ShaderToy

•  computation often cheaper than
memory access

PROCEDURAL TEXTURES: PERLIN NOISE

•  several good explanations
•  http://www.noisemachine.com/talk1
•  http://freespace.virgin.net/hugo.elias/models/m_perlin.htm
•  http://www.robo-murito.net/code/perlin-noise-math-faq.html

http://mrl.nyu.edu/~perlin/planet/

