
12/9/2016

1

33 – BIG REVIEW

• This review is NOT everything you need to know
• This is just a list of questions you might want to answer in

order to start preparation
• Now is a good time to start preparing!

RENDERING

• What is rendering?
• What is the input for the rendering process? Output?
• What are the stages of rendering?

• Describe each one

• How do we make rendering real-time?
• How do we make rendering realistic?

12/9/2016

2

THE RENDERING PIPELINE

HOMOGENEOUS COORDINATES

• Why do we use homogeneous coordinates?
• How to convert them from/to Euclidean coordinates?

• Is such conversion 1-1?

• Where in the pipeline do we operate with HC/EC?
• How to tell a vector from a point in HC?

12/9/2016

3

TRANSFORMATION MATRICES

• What’s an affine transformation? Linear?
• Can all of them be represented as matrix operations?
• What’s a structure of a transformation matrix?

AUGMENTED MATRIX

݉ଵଵ ݉ଵଶ ݉ଵଷ ܾ௫
݉ଶଵ ݉ଶଶ ݉ଶଷ ܾ௬
݉ଷଵ ݉ଷଶ ݉ଷଷ ܾ௭
0 0 0 ݓ

Translation
Linear Transformation

12/9/2016

4

TRANSFORMING COORDINATE FRAME

P P

cos ߠ െ sin ߠ ௫݌ ⋅ ሺ1െcos	θሻ + ݌௬ ⋅ sinθ
sin ߠ cos ߠ ௬݌ ⋅ ሺ1െcos	θሻ + ݌௫ ⋅ sinθ
0 0 1

௫ݒ
௬ݒ
1

Columns are new basis vectors (and new origin)!

PIPELINE

• What are the transformations involved in the pipeline?
• What are the coordinate systems involved?
• Why do we do perspective divide?
• Why do we do clipping before perspective divide?
• Why do we need viewport transform?

12/9/2016

5

MATH

• What are implicit, explicit, and parametric ways to define
geometry?

• What are their limitations?

• How to intersect two objects if they are
• Both implicitly defined
• Both explicitly defined

• How many parameters do we need to represent objects
parametrically?

12/9/2016

6

MATH

• How to calculate a normal to an implicit surface/curve?
• How to calculate a tangent plane?
• How to approximate surface area of some 2D shape?
• How to intersect a ray with a planar polygon in 2D? In 3D?

TRIANGLE
• Normal

• Area

)()(

)()(

0201

0201

PPPP

PPPP
n






20102

1
PPPPA 

0P 1P

2P

12/9/2016

7

AFFINE TRANSFORMATIONS

COMPOSING TRANSFORMATIONS

i


j


i


j


Fh

FW

suppose we want

FW

Fh

Rotate(z,-90)

hA PzRotP)90,(

FW

Fh

Translate(2,3,0)

AW PTransP)0,3,2(

hW PzRotTransP)90,()0,3,2(
Fh

12/9/2016

8

COMPOSING TRANSFORMATIONS

• R-to-L: interpret operations wrt fixed coords
• moving object

• L-to-R: interpret operations wrt local coords
• changing coordinate system

MVMV

MVMV

MzRotM

MTransM

)90,(

)0,3,2(




hW PzRotTransP)90,()0,3,2(

COMPOSING TRANSFORMATIONS

Fh

FW

Rotate(z,-90)

Fh

FW

Translate(-3,2,0) in local coords

hW PTranszRotP)0,2,3()90,(

12/9/2016

9

ROTATION ABOUT A POINT: MOVING OBJECT

FW

translate p
to origin



rotate about
p by :

rotate about
origin

translate p
back

SIMPLE COMPOSITIONS

ݎܶ ,ଵݔ ,ଵݕ ଵݖ ⋅ ݎܶ ,ଶݔ ,ଶݕ ଶݖ ൌ ଵݔሺݎܶ ൅ ,ଶݔ ଵݕ ൅ ,ଶݕ ଵݖ ൅ ଶሻݖ
ݎܶ ,ଶݔ ,ଶݕ ଶݖ ⋅ ݎܶ ,ଵݔ ,ଵݕ ଵݖ 	ൌ ݎܶ ,ଶݔ ,ଶݕ ଶݖ ⋅ ݎܶ ,ଵݔ ,ଵݕ ଵݖ

݈ܵܿܽ݁ ܽ, ܾ, ܿ ⋅ ݈ܵܿܽ݁ ݀, ݁, ݂ ൌ ݈ܵܿܽ݁ሺܽ݀, ܾ݁, ݂ܿሻ
݈ܵܿܽ݁ ܽ, ܾ, ܿ ⋅ ݈ܵܿܽ݁ ݀, ݁, ݂ ൌ ݈ܵܿܽ݁ ݀, ݁, ݂ ⋅ ݈ܵܿܽ݁ሺܽ, ܾ, ܿሻ

ݐ݋ܴ ,ߙ 0,0,1 ⋅ ݐ݋ܴ ,ߚ 0,0,1 ൌ ߙሺݐ݋ܴ ൅ ,ߚ 0,0,1ሻ
ݐ݋ܴ ,ߙ 0,0,1 ⋅ ݐ݋ܴ ,ߚ 0,0,1 ൌ ݐ݋ܴ ,ߚ 0,0,1 ⋅ ݐ݋ܴ ,ߙ 0,0,1

12/9/2016

10

MORE COMPLICATED COMPOSITIONS

ݎܶ ,ݔ ,ݕ 	ݖ ⋅ ݈ܵܿܽ݁ ܽ, ܾ, ܿ ് ݈ܵܿܽ݁ ܽ, ܾ, ܿ ⋅ ݎܶ ,ݔ ,ݕ ݖ

ݎܶ ,ݔ ,ݕ 	ݖ ⋅ ݈ܵܿܽ݁ ܽ, ܾ, ܿ ൌ ݈ܵܿܽ݁ ܽ, ܾ, ܿ ⋅ ݎܶ
ݔ
ܽ
,
ݕ
ܾ
,
ݖ
ܿ

ݎܶ ,ݔ ,ݕ ݖ ⋅ ݐ݋ܴ ,ߙ 0,0,1 ് ݐ݋ܴ ,ߙ 0,0,1 ⋅ ,ݔሺݎܶ ,ݕ ሻݖ
ݐ݋ܴ ,ߙ 0,0,1 ⋅ ݐ݋ܴ ,ߚ 0,1,0 ് ݐ݋ܴ ,ߚ 0,1,0 ⋅ ݐ݋ܴ ,ߙ 0,0,1
݈ܵܿܽ݁ ܽ, ܽ, ܽ ⋅ ݐ݋ܴ ,ߚ 0,0,1 ൌ ݐ݋ܴ ,ߚ 0,0,1 ⋅ ݈ܵܿܽ݁ሺܽ, ܽ, ܽሻ

݈ܵܿܽ݁ ܽ, ܾ, ܿ ⋅ ݐ݋ܴ ,ߚ 0,0,1 ് ݐ݋ܴ ,ߚ 0,0,1 ⋅ ݈ܵܿܽ݁ሺܽ, ܾ, ܿሻ

INVERSE TRANSFORMS

ݎܶ ,ݔ ,ݕ ݖ ିଵ ൌ ሻݖെ,ݕെ,ݔሺെݎܶ

ݐ݋ܴ ,ߙ 0,0,1 ିଵ ൌ ݐ݋ܴ െߙ, 0,0,1 ൌ ݐ݋ܴ ,ߙ 0,0,1 ் (orthogonal!)

݈ܵܿܽ݁ ܽ, ܾ, ܿ ିଵ ൌ ݈ܵܿܽ݁
1
ܽ
,
1
ܾ
,
1
ܿ

12/9/2016

11

ROTATION AFTER NON-UNIFORM SCALE

• Not what you’d expect!
• ܯ ൌ ݈ܵܿܽ݁ ܽ, ܾ, ܿ ⋅ ݐ݋ܴ ,ߚ 0,0,1 ൌ

a ⋅ cos	ሺߚሻ െܽ ⋅ sin ߚ 0 0
b ⋅ sin	ሺߚሻ ܾ ⋅ cos ߚ 0 0

0 0 1 0
0 0 0 1

• Basis vector not orthogonal

TRANSFORMATION HIERARCHIES

•Example

4

15 3

2

x

y

ଵܯ ൌ ሺ௫,௬ሻݎܶ ⋅ ଵߠݐ݋ܴ

ଶܯ ൌ ଵܯ ⋅ ሺଶ.ହ,ହ.ହሻݎܶ ⋅ ଶߠ	ݐ݋ܴ

ଷܯ ൌ ଶܯ ⋅ ሺ଴,ିଷ.ହሻݎܶ ⋅ ଷߠ	ݐ݋ܴ

12/9/2016

12

PROJECTIONS

• What is the purpose of projections?
• What’s the difference between ortho- and perspective

projections?
• Who chooses which projection to use?
• Can we get a nearly orthographic projection while using a

perspective projection matrix?
• What happens to z in perspective projection?
• What happens to the view volumes?

CLIPPING

• What happens to points during clipping? Triangles?
• What are the equations of the frustum planes?
• How can we test if a triangle should be clipped?

12/9/2016

13

RASTERIZATION

• What’s rasterization?
• How do we rasterize a polygon?
• Why do we interpolate?
• What are the values we typically interpolate?
• How?
• How is it done in ray/path tracing?

LIGHTING & SHADING

• What’s a Gouraud shading?
• What are Lambert/Phong materals?
• If the scene is lit with only ambient light, what will we see?

• Only diffuse/specular?

• How can we control size of the specular highlight?
• How do we shade in ray tracing? in path tracing?
• In path tracing, how can we simulate more complex

materials?

12/9/2016

14

TEXTURING

• How can we tile a wall with bricks?
• If a texture contains a single brick, what should be texture

coordinates for wall’s corners?

• Why do we use mipmaps?
• How much storage do we need for them?
• How do we generate mipmaps?
• Where do we get texture coordinates?
• How do we interpolate them?

BUMP AND NORMAL MAPPING

• Why?
• Which mapping would you use to add scales to a fish?
• Bullets on the walls?
• Fur on an animal?
• How do we apply bump mapping?

12/9/2016

15

ENVIRONMENT MAPS

• Why do we need them?
• What are the types?
• How do we generate them?
• How do we apply them?
• When do we re-generate them?

SHADOW MAPS

• Why do we need them?
• How does it fit into pipeline?
• What’s the algorithm?

12/9/2016

16

Local illumination - Fast
Ignore real physics, approximate the look
Interaction of each object with light

• Compute on surface (light to viewer)

ILLUMINATION MODELS/ALGORITHMS

Global illumination – Slow
Physically based

Interactions between objects

BASIC RAY-TRACING ALGORITHM
RayTrace(r,scene)
obj = FirstIntersection(r,scene)

if (no obj) return BackgroundColor;
else {

if (Reflect(obj))
reflect_color = RayTrace(ReflectRay(r,obj));

else
reflect_color = Black;

if (Transparent(obj))
refract_color = RayTrace(RefractRay(r,obj));

else
refract_color = Black;

return Shade(reflect_color, refract_color, obj);
}

12/9/2016

17

• Algorithm above does not terminate

• Termination Criteria
• No intersection
• Contribution of secondary ray attenuated below threshold – each

reflection/refraction attenuates ray
• Maximal depth is reached

WHEN TO STOP?

• Trace ray from each ray-object intersection point to light
sources

• If the ray intersects an object in between  point is shadowed from
the light source

SIMULATING SHADOWS

shadow = RayTrace(LightRay(obj,r,light));

return Shade(shadow,reflect_color,refract_color,obj);

12/9/2016

18

RAY TRACING: IDEA
Image PlaneEye

Refracted
Ray

Reflected
Ray

Light
Source

Shadow
Rays

• Core of ray-tracing  must be extremely efficient
• Usually involves solving a set of equations

• Using implicit formulas for primitives

RAY-OBJECT INTERSECTIONS

Example: Ray-Sphere intersection

ray:
(unit) sphere:
quadratic equation in t :

x t p v t y t p v t z t p v tx x y y z z() , () , ()     

p

v
x y z2 2 2 1  

0 1

2

1

2 2 2

2 2 2 2

2 2 2

      

     

   

() () ()

() ()

()

p v t p v t p v t

t v v v t p v p v p v

p p p

x x y y z z

x y z x x y y z z

x y z

12/9/2016

19

• Local surface information (normal…)
• For implicit surfaces F(x,y,z)=0:

normal n(x,y,z) is gradient of F:

• Example:

RAY-TRACING: DIRECT ILLUMINATION

2222),,(rzyxzyxF 


















z

y

x

zyx

2

2

2

),,(n
Needs to be normalized!

݊ ,ݔ ,ݕ ݖ ൌ ܨߘ ,ݔ ,ݕ ݖ ൌ
,ݔሺܨ߲ ,ݕ ݔ߲/ሻݖ
,ݔሺܨ߲ ,ݕ ݕ߲/ሻݖ
,ݔሺܨ߲ ,ݕ ݖ߲/ሻݖ

• Basic algorithm is simple but VERY expensive
• Optimize…

• Reduce number of rays traced
• Reduce number of ray-object intersection calculations

• Parallelize
• Cluster
• GPU

• Methods
• Bounding Boxes
• Spatial Subdivision

• Visibility, Intersection/Collision
• Tree Pruning

OPTIMIZED RAY-TRACING

12/9/2016

20

ALIASING & ANTI-ALIASING

© Adobe, inc., https://helpx.adobe.com/photoshop/key‐concepts/aliasing‐anti‐aliasing.html

MIPMAPPING

Without MIP-mapping

With MIP-mapping

use “image pyramid” to precompute
averaged versions of the texture

12/9/2016

21

THANK YOU AND GOOD BYE!

