29 - COLOR

Textbook: 19

UGRAD.CS.UBC.CA/~CS314

Alla Sheffer, 2016

PHYSICAL COLOR

- Visible energy - small portion of the electro-magnetic spectrum
- Pure monochromatic colors are found at wavelengths between 380 nm (violet) and 780 nm (red)

VISIBLE COLOR

- Eye can perceive other colors as combination of several pure colors
- Most colors may be obtained as combination of small number of primaries
- Output devices use this approach

CIE DIAGRAM (1931 \& 1976)

- Universal standard
- Color (ignoring intensity) - affine (barycentric) combination of 3 primaries X , Y, Z
- 3D vector (x, y, z) s. t. $x+y+z=1$
- Colors inside right-angle unit triangle formed by two of the primaries
- Not all "possible" colors visible
- Visible colors contained in horse-shoe region
- Pure colors (hues) located on region
 boundary

THE CIE DIAGRAM (CONT'D)

- Color "white" is point $\mathrm{W}=(1 / 3,1 / 3,1 / 3)$
- Any visible color C is blend of hue C' \& W
- Purity of color measured by its saturation:

$$
\operatorname{saturation}(\mathrm{C})=\frac{d_{1}}{d_{1}+d_{2}}
$$

- Complement of C is (only) other hue D on line through C' and W

THE CIE DIAGRAM (CONT'D)

- Color enhancement of image
- increasing the saturation of the colors
- moves them towards the boundary of the visible region

unsaturated

saturated

COLOR GAMUTS

- Most color output devices can not generating all visible colors in CIE diagram
- Possible colors bounded by triangle in XYZ space with vertices P, Q, R
- Color = barycentric combination of P, Q, R
- This triangle is called the device gamut

COLOR GAMUTS (CONT'D)

- Example: Primaries of low quality color monitor:

$$
\left[\begin{array}{c}
R E D \\
G R E E N \\
B L U E
\end{array}\right]=\left[\begin{array}{l}
P \\
Q \\
R
\end{array}\right]=\left[\begin{array}{lll}
.628 & 346 & .026 \\
.286 & .588 & .144 \\
.150 & .070 & .780
\end{array}\right]
$$

- Different color displays use different P, Q, R

- Same RGB image data, displayed on two monitors will look different !!
- Questions - Given P,Q \& R of two color monitors
\& image I
- How to make I looks the same on both monitors?
- Is it always possible?

THE RGB COLOR MODEL

- Common in describing emissive color displays
- Red, Green and Blue are primaries in this model
- Color (including intensity) described as combination of primaries
- Intensity range = "Dynamic Range"

THE RGB COLOR MODEL (EMISSION)

Col $=r R+g G+b B \quad r, g, b \in[0,1]$

- Yellow= Red+Green
- Cyan = Green+Blue
- White = Red+Green+Blue
- Gray = 0.5 Red+0.5 Blue+0.5 Green(0.5,0.5,0.5)
- Main diagonal of RGB cube represents shades of gray Demo at http://hslpicker.com/

THE CMY COLOR MODEL (ABSORPTION)

- Used mainly in color printing, where light is absorbed by
 dyes
- Cyan, Magenta and Yellow primaries are complements of Red, Blue and Green
- Primaries (dyes) subtracted from white paper which absorbs no energy
- Red = White-Cyan = White-Green-Blue
- Green $=$ White-Magenta $=$ White-Red-Blue $(1,0,1)$
- Blue = White-Yellow = White-Red-Green (1,1,0)
- (r,g,b) $=(1-\mathrm{c}, 1-\mathrm{m}, 1-\mathrm{y})$
- Demo: https://www.colorcodehex.com/html-color-picker.html

LUMINANCE

- Color "brightness/darkness"
- Easiest to quantify on greyscale
- Harder to quantify on full color

- Human eye more sensitive to changes in luminance than to changes in hue or saturation

SETTING LUMINANCE

- Based on human perception
- Example tool to set luminance value:

COLOR TO GRAYSCALE

- How?

Color

Gooch'05

COLOR QUANTIZATION

- High-quality color resolution for images -8 bits per primary $=24$ bits $=$ 16.7M colors
- Reducing number of colors - select subset (colormap/palette) \& map all colors to them
- Device capable of displaying only a few different colors simultaneously
- E.g. an 8 bit display

Color Quantization Example

256 colors

16 colors

64 colors

4 colors

COLOR QUANTIZATION ISSUES

- How representative colors are chosen?
- Fixed representatives, image independent - fast
- Image content dependent slow
- Which image colors are mapped to which representatives?
- Nearest representative - slow
- By space partitioning - fast

Choosing the Representatives

UNIFORM QUANTIZATION

- Fixed representatives - lattice structure on RGB cube
- Image independent - no need to analyze input image
- Some representatives may be wasted
- Fast mapping to representatives by discarding least significant bits of each component
- Common way for $24 \rightarrow 8$ bit quantization
- retain 3+3+2 most significant bits of R, G and B components

MEDIAN-CUT QUANTIZATION

- Image colors partitioned into n cells, s.t. each cell contains approximately same number of image colors
- Recursive algorithm
- Image representative
- Average of image colors in each cell
- Image color mapped to rep. of containing cell
- not necessarily nearest representative
image-dependent quantization to 4 colors

0
small quantization error

Quantization

COLOUR BLINDNESS, TETRACHROMATS

- simulating color vision deficiencies

Normal vision

Deuteranope

Protanope

Tritanope

VISCHECK.COM

COLOR/LIGHTNESS CONSTANCY

- color perception depends on surrounding
- colors in close proximity
- illumination under which the scene is viewed

STROOP EFFECT

- blue
- green
- purple
- red
- orange
- interplay between cognition and perception
- used as a test (of what?)

STROOP EFFECT

- зеленый
- оранжевый
- синий
- красный
- фиолетовый
- interplay between cognition and perception
- used as a test (of what?)

