
11/22/2016

1

27 – BLENDING &
COMPOSITING

Textbook: 16.4

UGRAD.CS.UBC.CA/~CS314
Alla Sheffer, 2016

THE RENDERING PIPELINE

11/22/2016

2

SOME OF YOU WERE WONDERING…

• Why is depth test AFTER the fragment shader?
• Why bother with computing the color if it’s behind

something?

• The answer is blending.

OPAQUE VS. TRASPARENT

• If all objects are opaque, no blending is needed
• As before, simply overwrite the color in framebuffer
• Then depth test can be done BEFORE fragment shader

• (if, of course, fragment shader does not modify z)

11/22/2016

3

OPAQUE VS. TRASPARENT

• For transparent objects, every time we’re writing into a
fragment buffer, we need to consider what there is already

OPAQUE VS. TRASPARENT

• For transparent objects, every time we’re writing into a
fragment buffer, we need to consider what there is already

• Per fragment:
• Fragment’s color: source color
• What’s in framebuffer: destination color

11/22/2016

4

OPAQUE VS. TRASPARENT

• For transparent objects, every time we’re writing into a
fragment buffer, we need to consider what there is already

• Per fragment:
• Fragment’s color: source color
• What’s in framebuffer: destination color

• Same idea as layers in Photoshop

How to combine those
2 colors into some new color?

BLENDING: THERE ARE MANY WAYS.

• Cool effects:
http://threejs.org/examples/webgl_materials_blending.html

11/22/2016

5

BLENDING EQUATIONS

• , , , 	 - destination color (what’s already in framebuffer)

• , , , 	 - source color (current fragment)

• , , , 	 – output color (result of blending)

Blending equations:
. . , .

. . , .

	 . (opaque) 	 . (semi-transparent)

BLENDING EQUATIONS

Blending equations:
. . , .

. . , .

A user chooses both and out of those options:

, ⋅ ⋅
, ⋅ ⋅
, ⋅ ⋅
, min ,
, max	 ,

d,s – some parameters

D (S) – either D.rgb (S.rgb) or
. 	 .

11/22/2016

6

BLENDING EQUATIONS

And d,s out of those:

, ∈ . , 1 . ,
. , 1 . ,
. , 1 .
. , 1 .

constant

A user chooses both and out of those options:

, ⋅ ⋅
, ⋅ ⋅
, ⋅ ⋅
, min ,
, max	 ,

D (S) – either D.rgb (S.rgb) or
. 	 .

WHAT CAN WE DO WITH THOSE?

• Simple transparency (“over operator”):
• ,
• 1 .
• .
• 0
• 1

. 1 . ⋅ . . ⋅ .
. 0 ⋅ . 1 ⋅ . 	

	 . (opaque) 	 . (semi-transparent)

11/22/2016

7

WHAT CAN WE DO WITH THOSE?

• Simple transparency (“over operator”):
• ,
• 1 .
• .
• 0
• 1

. 1 . ⋅ . . ⋅ .
. 0 ⋅ . 1 ⋅ . 	

rgb: 1 0.7 ⋅ , , 0.7 ⋅ , ,
= (0,0,0.3) + (0.7, 0.7,0)=(0.7,0.7,0.3)

	 . (opaque)

	 . (semi-transparent)

OVER OPERATOR

. 1 . ⋅ . . ⋅ .
• Examples: A. 1, . 0.4

A B

A B
A over B:

. 1 ⋅ . 1 1 ⋅ .

B over A:
. 0.4 ⋅ . 1 0.4 ⋅ .

11/22/2016

8

OVER OPERATOR
. 1 . ⋅ . . ⋅ .

• Examples: A. 0.4, . 1

A over B:
. 1 0.4 ⋅ . 0.4 ⋅ .

B over A:
. 0 ⋅ . 1 ⋅ .A B

A B

WHAT CAN WE DO WITH THOSE?

• “Multiply”
• ,
• .
•
• 0
• 1

. . ⋅ .
. 0 ⋅ . 1 ⋅ . 	

	 . (opaque) 	 . (semi-transparent)

11/22/2016

9

WHAT CAN WE DO WITH THOSE?

• “Darken”
• ,
•
•
• 0
• 1

. min	 . , .
. . 	

	 . (opaque) 	 . (opaque)

OPENGL BLENDING

• Caveats:
• Note: alpha blending is an order-dependent operation!

• It matters which object is drawn first AND
• Which surface is in front

• For 3D scenes, this makes it necessary to keep track of rendering
order explicitly
• E.g. always draw “back” surface first

11/22/2016

10

BLENDING EXAMPLE
• The same idea can be used even when objects are opaque

BLENDING EXAMPLE
• The same idea can be used even when objects are opaque

• Boundary pixels are now a bit transparent => smooth border

11/22/2016

11

BLENDING/COMPOSITING IN VFX

• e.g. https://www.youtube.com/watch?v=63o0QJ3CjtY

