

Blending equations:
 $Out.rgb = f_1(D.rgb,S.rgb)$
 $Out. \alpha = f_2(D.\alpha,S.\alpha)$ A user chooses both f_1 and f_2 out of those options: $f(D,S) = d \cdot D + s \cdot S$
 $f(D,S) = d \cdot D - s \cdot S$
 $f(D,S) = s \cdot S - d \cdot D$
f(D,S) = min(D,S)d,s - some parametersf(D,S) = min(D,S)
f(D,S) = max(D,S)D(S) - either D.rgb (S.rgb) or
 $D.\alpha(S.\alpha)$

BLENDING EQUATIONS

A user chooses both f_1 and f_2 out of those options:

 $f(D,S) = d \cdot D + s \cdot S$ $f(D,S) = d \cdot D - s \cdot S$ $f(D,S) = s \cdot S - d \cdot D$ $f(D,S) = \min(D,S)$ $f(D,S) = \max(D,S)$

D (S) – either D.rgb (S.rgb) or $D.\alpha$ (S. α)

And d,s out of those:

 $d, s \in \{D.rgb, 1 - D.rgb, S.rgb, 1 - S.rgb, D.\alpha, 1 - D.\alpha, S.\alpha, 1 - D.\alpha, S.\alpha, 1 - S.\alpha, Constant\}$

9

BLENDING/COMPOSITING IN VFX

• e.g. https://www.youtube.com/watch?v=63o0QJ3CjtY