LINES AND CURVES

• Explicit - one coordinate as function of the others

\[y = f(x) \]
\[z = f(x, y) \]

Line

\[y = mx + b \]
\[y = \frac{(y_2 - y_1)}{(x_2 - x_1)} (x - x_1) + y_1 \]

Circle

\[y = \pm \sqrt{r^2 - x^2} \]
LINES AND CURVES
• Parametric – all coordinates as functions of common parameters
\[(x, y) = (f_1(t), f_2(t)) \]
\[(x, y, z) = (f_1(u, v), f_2(u, v), f_3(u, v)) \]

- **Line**
 \[x(t) = x_1 + t(x_2 - x_1) \]
 \[y(t) = y_1 + t(y_2 - y_1) \]
 \[t \in [0, 1] \]
 \[x(\theta) = r \cos(\theta) \]
 \[y(\theta) = r \sin(\theta) \]
 \[\theta \in [0, 2\pi] \]

- **Circle**

LINES AND CURVES
• Implicit - define as “zero set” of some function
\[\{(x, y) : F(x, y) = 0\} \]
\[\{(x, y, z) : F(x, y, z) = 0\} \]

• May define meaningful partition of space
\[\{(x, y) : F(x, y) > 0\}, \{(x, y) : F(x, y) = 0\}, \{(x, y) : F(x, y) < 0\} \]
LINES AND CURVES - IMPLICIT

Line
\[Ax + By + C = 0 \]

Circle
\[(x - c_x)^2 + (y - c_y)^2 - r^2 = 0 \]

(Please note: The circle is not drawn accurately in the diagram.)

(A, B) - normal

Plane - Implicit

Ax + By + Cz + D = 0

(A, B, C)

(Please note: The plane is not drawn accurately in the diagram.)
ARBITRARY IMPLICIT FUNCTION

\[
F(x, y, z) = 0
\]

\[
n(x, y, z) = \nabla F(x, y, z) = \begin{pmatrix}
\frac{\partial F(x, y, z)}{\partial x} \\
\frac{\partial F(x, y, z)}{\partial y} \\
\frac{\partial F(x, y, z)}{\partial z}
\end{pmatrix}
\]
VERTEX SHADER: CLOSER LOOK

Vertex Shader

Vertices → modelling transformation → view transformation → projection

Object Coordinate System → World Coordinate System → Camera Coordinate System → Clip Coordinate System

Per-vertex attributes
CAMERA COORDINATE SYSTEM

- \(w = \frac{p_{\text{eye-pref}}}{\|p_{\text{eye-pref}}\|} \)
- \(u = \frac{v_{up} \times w}{\|v_{up} \times w\|} \)
- \(v = w \times u \)

VIEW VOLUME

ORTHOGRAPHIC PROJECTION

- Specifies field-of-view, used for clipping
- Restricts domain of \(z \) stored for visibility test
PINHOLE CAMERA (PERSPECTIVE)

• Viewing from point at finite distance

• Without loss of generality:
 • Viewpoint at origin
 • Viewing plane is $z=d$

• Given $P=(x,y,z)$ triangle similarity gives:

\[\frac{x}{z} = \frac{x_p}{d} \text{ and } \frac{y}{z} = \frac{y_p}{d} \Rightarrow x_p = \frac{x d}{z} \text{ and } y_p = \frac{y d}{z} \]

PERSPECTIVE PROJECTION (CONT’D)

• What is (if any) is the difference between:
 • Moving projection plane
 • Moving viewpoint (center of projection)?
PERSPECTIVE PROJECTION

\[
P(x, y, z, 1) = \begin{pmatrix} d & 0 & 0 & 0 \\ 0 & d & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} = \begin{pmatrix} xd \\ yd \\ z \\ z \end{pmatrix}
\]

• Keeping track of z:

\[
\begin{pmatrix} d & 0 & 0 & 0 \\ 0 & d & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ z-1 \end{pmatrix} = \begin{pmatrix} dx \\ dy \\ z-1 \\ z \end{pmatrix} \Rightarrow \begin{pmatrix} dx/z \\ dy/z \\ 1-1/z \end{pmatrix}
\]

• NEW Z is monotonic increasing function of old

OPENGL PERSPECTIVE DERIVATION

Map FRUSTUM to the NDCS cube.
Now we need to scale/translate/shear -> generic transform
PERSPECTIVE PROJECTION

\[
\begin{bmatrix}
\frac{2n}{r-l} & 0 & \frac{r+l}{r-l} & 0 \\
0 & \frac{2n}{t-b} & \frac{t+b}{t-b} & 0 \\
0 & 0 & -\frac{(f+n)}{f-n} & -\frac{2fn}{f-n} \\
0 & 0 & -1 & 0
\end{bmatrix}
\]

CLIPPING

What's the purpose of clipping?
How is it done?
When is it done in pipeline?
Why do we need near/far planes?
PIPELINE EXPANDED

VIEWPORT TRANSFORM

• What does it do?

\[
\begin{bmatrix}
 x_w \\
 y_w \\
 z_w \\
 1
\end{bmatrix} = \begin{bmatrix}
 W/2 & 0 & 0 & (W-1)/2 \\
 0 & H/2 & 0 & (H-1)/2 \\
 0 & 0 & 1/2 & 1/2 \\
 0 & 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
 x_n \\
 y_n \\
 z_n \\
 1
\end{bmatrix}
\]
RASTERIZATION

- This is part of the fixed function pipeline
- Input: clipped polygons
- Output: fragments (with **varying variables** interpolated)

SCAN CONVERSION: IDEA

A point is inside \(\Leftrightarrow A_i x + B_i y + C > 0, \ i = 1, \ldots, 3 \)
HOW TO TREAT BOUNDARY?

• If two triangles share an edge, scan conversion should be consistent
 • No pixel drawn twice
 • No gaps

• E.g. draw left edge, don’t draw right one
SCAN CONVERSION

• What are problems of scan conversion?
• How to find a bounding box?
• How to scan-convert an arbitrary polygon?

INTERPOLATION

• What does it do?
INTERPOLATION – ACCESS TRIANGLE INTERIOR

• Interpolate between vertices:
 • z
 • r,g,b - colour components
 • u,v - texture coordinates
 • N_x, N_y, N_z - surface normals
• Equivalent
 • Barycentric coordinates
 • Bilinear interpolation
 • Plane Interpolation
SIMPLER:

How to interpolate color between two points?

\[c(t) = c(0) \cdot (1 - t) + c(1) \cdot t \]

Linear interpolation

BI-LINEAR INTERPOLATION

\[P = \frac{c_2}{c_1 + c_2} \cdot P_L + \frac{c_1}{c_1 + c_2} \cdot P_R \]

\[P_L = \frac{d_2}{d_1 + d_2} \cdot P_2 + \frac{d_1}{d_1 + d_2} \cdot P_3 \]

\[P_R = \frac{b_2}{b_1 + b_2} \cdot P_2 + \frac{b_1}{b_1 + b_2} \cdot P_3 \]

\[P = \frac{c_2}{c_1 + c_2} \left(\frac{d_2}{d_1 + d_2} P_2 + \frac{d_1}{d_1 + d_2} P_3 \right) + \frac{c_1}{c_1 + c_2} \left(\frac{b_2}{b_1 + b_2} P_2 + \frac{b_1}{b_1 + b_2} P_3 \right) \]
BARYCENTRIC COORDINATES

- **Area**
 \[A = \frac{1}{2} \left\| \overrightarrow{P_1P_2} \times \overrightarrow{P_1P_3} \right\| \]

- **Barycentric coordinates**
 \[
 a_1 = \frac{A_{P_2P_3}}{A}, \quad a_2 = \frac{A_{P_3P_1}}{A}, \\
 a_3 = \frac{A_{P_1P_2}}{A}, \\
 P = a_1P_1 + a_2P_2 + a_3P_3 \\
 f(P) \approx a_1f(P_1) + a_2f(P_2) + a_3f(P_3)
 \]

BARYCENTRIC COORDINATES

- weighted (affine) combination of vertices
 \[
 P = a_1 \cdot P_1 + a_2 \cdot P_2 + a_3 \cdot P_3 \\
 a_1 + a_2 + a_3 = 1 \\
 0 \leq a_1, a_2, a_3 \leq 1
 \]
BARYCENTRIC COORDINATES

• Positive inside the triangle
• Always sum up to 1
• If we extend barycentric coordinates outside the triangle,

\[A = \frac{1}{2} || \overrightarrow{P_1P_2} \times \overrightarrow{P_1P_3} ||\] \quad \rightarrow \quad A = \frac{1}{2} (\overrightarrow{P_1P_2} \times \overrightarrow{P_1P_3})_z

• We have signed areas
• Outside the triangle at least one coordinate < 0

ISSUE WITH INTERPOLATION UNDER PERSPECTIVE PROJECTION
TEXTURE MAPPING

Texture coordinate interpolation
• Perspective foreshortening problem
• Also problematic for color interpolation, etc.

INTERPOLATION: SCREEN VS. WORLD SPACE

• Screen space interpolation incorrect under perspective
 • Problem ignored with shading, but artifacts more visible with texturing
TEXTURE COORDINATE INTERPOLATION

• Perspective Correct Interpolation
 • \(\alpha, \beta, \gamma \): Barycentric coordinates (2D) of point \(P \)
 • \(s_0, s_1, s_2 \): texture coordinates of vertices
 • \(w_0, w_1, w_2 \): homogenous coordinate of vertices

\[
\begin{align*}
 s &= \frac{\alpha \cdot s_0 / w_0 + \beta \cdot s_1 / w_1 + \gamma \cdot s_2 / w_2}{\alpha / w_0 + \beta / w_1 + \gamma / w_2} \\
 \end{align*}
\]

• Similarly for \(t \)

Derivation (similar triangles):

LIGHT SOURCES

• Point source
 • light originates at a point
 • Rays hit planar surface at different angles

• Parallel source
 • light rays are parallel
 • Rays hit a planar surface at identical angles
 • May be modeled as point source at infinity
 • Directional light
LIGHT
• Light has color
• Interacts with object color (r,g,b)
 \[I = I_a k_a \]
 \[I_a = (I_{ar}, I_{ag}, I_{ab}) \]
 \[k_a = (k_{ar}, k_{ag}, k_{ab}) \]
 \[I = (I_r, I_g, I_b) = (I_{ar} k_{ar}, I_{ag} k_{ag}, I_{ab} k_{ab}) \]

• Blue light on white surface?
• Blue light on red surface?

DIFFUSE REFLECTION
• Illumination equation is now:
 \[I = I_a k_a + I_p k_d (\text{N} \cdot \text{L}) = I_a k_a + I_p k_d \cos \theta \]

 \[I_p \] - point/parallel source’s intensity
 \[k_d \] - surface diffuse reflection coefficient

• Can we locate light source from shading?
SPECULAR REFLECTION

• Shiny objects (e.g. metallic) reflect light in preferred direction R determined by surface normal N.

![Image of specular reflection](image)

• Most objects are not ideal mirrors - reflect in the immediate vicinity of R

ILLUMINATION EQUATION

• For multiple light sources:

\[I = I_a k_a + \sum_p \frac{I_p}{d_p^2} (k_d (N \cdot L_p) + k_s (R_p \cdot V)^n) \]

• \(d_p\) - distance between surface and light source + distance between surface and viewer (Heuristic atmospheric attenuation)
FLAT SHADING

- Illumination value depends only on polygon normal
 - each polygon colored with uniform intensity
- Not adequate for polygons approximating smooth surface
- Looks non-smooth
 - worsened by Mach bands effect

GOURARD SHADING

- Polyhedron - approximation of smooth surface
 - Assign to each vertex normal of original surface at point
 - If surface not available use estimate normal
- Compute illumination intensity at vertices using those normals
- Linearly interpolate vertex intensities over interior pixels of polygon projection
PHONG SHADING

• Interpolate (in image space) normal vectors instead of intensities
• Apply illumination equation for each interior pixel with its own normal

\[
n_4 = \alpha_1 n_1 + (1 - \alpha_1) n_2 \\
n_5 = \alpha_2 n_1 + (1 - \alpha_2) n_3
\]

\[
n(x, y) = \alpha_3 n_4 + (1 - \alpha_3) n_5 \\
c(x, y) = \text{I'll}(n(x, y))
\]

Texture Mapping

(u, v) parameterization in OpenGL
EXAMPLE TEXTURE MAP

```c
void textureExample()
{
    // Draw a texture
    glBegin(GL_QUADS);
    glTexCoord2d(0, 0);
    glVertex3d (x, y, z);
    glTexCoord2d(1, 0);
    glVertex3d (x, y, z);
    glTexCoord2d(1, 1);
    glVertex3d (x, y, z);
    glTexCoord2d(0, 1);
    glVertex3d (x, y, z);
    glEnd();
}
```

RECONSTRUCTION

- how to deal with:
 - pixels that are much larger than texels?
 - minification
 - pixels that are much smaller than texels?
 - magnification
MIPMAPPING

use “image pyramid” to precompute averaged versions of the texture

store whole pyramid in single block of memory

![Without MIP-mapping](Without-MIP-mapping.png)

![With MIP-mapping](With-MIP-mapping.png)

BUMP MAPPING: NORMALS AS TEXTURE

- object surface often not smooth – to recreate correctly need complex geometry model
- can control shape “effect” by locally perturbing surface normal
 - random perturbation
 - directional change over region
BUMP MAPPING

- bump mapping gets silhouettes wrong
 - shadows wrong too

- change surface geometry instead
 - only recently available with realtime graphics
 - need to subdivide surface

DISPLACEMENT MAPPING

$O'(u)$
Lengthening or shortening $O(u)$ using $B(u)$

$N'(u)$
The vectors to the ‘new’ surface

CUBE MAPPING

• 6 planar textures, sides of cube
 • point camera in 6 different directions, facing out from origin

SHADOWS

Need at least 2 shader passes:
 1. Draw everything as it’s viewed from the LIGHT SOURCE
 Depth per pixel (‘depth map’)
SHADOW MAPS

Need at least 2 shader passes:
1. Draw everything as it’s viewed from the LIGHT SOURCE
 - **Depth** per pixel (‘depth map’).
2. Now draw everything from CAMERA
 - When computing color per pixel:
 - Find corresponding depth map pixel: D - distance from light source
 - Is distance from me to the camera > D?
 - Yes: I am occluded! I’m in SHADOW.
 - No: I’m LIT!

THE RENDERING PIPELINE

```
Vertices and attributes
   → Vertex Shader
       Modelview transform
       Per-vertex attributes → Vertex Post-Processing
       → Scan conversion
       Interpolation
   → Rasterization
       → Fragment Shader
       Texturing/…
       Lighting/shading
   → Per-Sample Operations
       Depth test
       Blending
   → Framebuffer
```
Z-BUFFER

- Store \((r,g,b,z)\) for each pixel
- Typically 8+8+8+24 bits, can be more

```
for all \(i,j\) {
    \text{Depth}[i,j] = \text{MAX\_DEPTH}
    \text{Image}[i,j] = \text{BACKGROUND\_COLOUR}
}
for all polygons \(P\) {
    for all pixels in \(P\) {
        if \((Z\_\text{pixel} < \text{Depth}[i,j])\) {
            \text{Image}[i,j] = C\_\text{pixel}
            \text{Depth}[i,j] = Z\_\text{pixel}
        }
    }
}
```

DEPTH TEST

- Why is it after FS?
• Reminder: projective transformation maps eye-space z to generic z-range (NDC)
• Simple example:

\[
T \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & a & b \\ 0 & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}
\]

• Thus:

\[
Z_{NDC} = \frac{az_{eye} + b}{-z_{eye}} = -a - \frac{b}{z_{eye}}
\]

Therefore, depth-buffer essentially stores -1/z, rather than z!
• Issue with integer depth buffers
 • High precision for near objects
 • Low precision for far objects
DEPTH TEST PRECISION

- Low precision can lead to depth fighting for far objects
 - Two different depths in eye space get mapped to same depth in framebuffer
 - Which object “wins” depends on drawing order and scan-conversion

- Gets worse for larger ratios $f:n$
 - Rule of thumb: $f:n < 1000$ for 24 bit depth buffer

\[
\frac{dz_{NDC}}{dz_{eye}} = \frac{-2fn}{(f-n)z_{eye}^2} = -\frac{2f}{\left(\frac{f}{n} - 1\right)z_{eye}^2}
\]