
11/13/2016

1

MIDTERM 2

• Viewing/Projections (orthographic, perspective)
• Clipping
• Rasterization

• Scan conversion
• Interpolation

• Lighting and shading
• Texturing. Bump/displacement/environment mapping.
• Shadow maps
• Depth test
• … and don’t forget everything we learned before Midterm 1

CPSC 314
21 – GLOBAL ILLUMINATION

UGRAD.CS.UBC.CA/~CS314

ll h ff

Textbook: 20

11/13/2016

2

Local illumination - Fast
Ignore real physics, approximate the look
Interaction of each object with light

• Compute on surface (light to viewer)

ILLUMINATION MODELS/ALGORITHMS

Global illumination – Slow
Physically based

Interactions between objects

Local illumination - Fast
Ignore real physics, approximate the look
Interaction of each object with light

• Compute on surface (light to viewer)

ILLUMINATION MODELS/ALGORITHMS

Global illumination – Slow
Physically based

Interactions between objects

11/13/2016

3

Local illumination - Fast
Ignore real physics, approximate the look
Interaction of each object with light

• Compute on surface (light to viewer)

ILLUMINATION MODELS/ALGORITHMS

Global illumination – Slow
Physically based

Interactions between objects

How?

WHAT WAS NON-PHYSICAL IN
LOCAL ILLUMINATION?

11/13/2016

4

GLOBAL ILLUMINATION ALGORITHMS

• Ray Tracing
• Path Tracing
• Photon Mapping
• Radiosity
• Metropolis light transport
• …

HOW SHOULD GLOBAL ILLUMINATION WORK?

11/13/2016

5

HOW SHOULD GLOBAL ILLUMINATION WORK?

Simulate light
• As it is emitted from light

sources

• As it bounces off objects / get
absorbed / refracted

• As some of the rays hit the
camera/eye

Image PlaneEye

Refracted
Ray

Reflected
Ray

Light
Source

PROBLEM?

11/13/2016

6

RAY TRACING: IDEA

Image PlaneEye

Refracted
Ray

Reflected
Ray

Light
Source

RAY TRACING: IDEA
Image PlaneEye

Refracted
Ray

Reflected
Ray

Light
Source

Shadow
Rays

11/13/2016

7

RAY TRACING

• Invert the direction of rays!
• Shoot rays from CAMERA through each pixel

• “Trace the rays back”

• Simulate whatever the light rays do:
• Reflection
• Refraction
• …

• Each interaction of the ray with an object adds to the final color
• Those rays are never gonna hit the light source, so

• Shoot “shadow rays” to compute direct illumination

• Mirror effects
• Perfect specular reflection

REFLECTION n

 

© 2010 Jules Berman ,
http://julesberman.blogspot.ca/

11/13/2016

8

• Interface between transparent
object and surrounding medium

• E.g. glass/air boundary

• Light ray breaks (changes direction)
based on refractive indices c1, c2

• Water c = 1.33, glass c = 1.52

REFRACTION
n

 1

 2

Snell’s Law

2211 sinsin  cc 

BASIC RAY-TRACING ALGORITHM
RayTrace(r,scene)
obj = FirstIntersection(r,scene)

if (no obj) return BackgroundColor;
else {

if (Reflect(obj))
reflect_color = RayTrace(ReflectRay(r,obj));

else
reflect_color = Black;

if (Transparent(obj))
refract_color = RayTrace(RefractRay(r,obj));

else
refract_color = Black;

return Shade(reflect_color, refract_color, obj);
}

11/13/2016

9

ONE BIG BUG….WHERE?
RayTrace(r,scene)
obj = FirstIntersection(r,scene)

if (no obj) return BackgroundColor;
else {

if (Reflect(obj))
reflect_color = RayTrace(ReflectRay(r,obj));

else
reflect_color = Black;

if (Transparent(obj))
refract_color = RayTrace(RefractRay(r,obj));

else
refract_color = Black;

return Shade(reflect_color, refract_color, obj);
}

• Algorithm above does not terminate…

• Termination Criteria
• No intersection
• Contribution of secondary ray attenuated below threshold – each

reflection/refraction attenuates ray
• Maximal depth is reached

WHEN TO STOP?

11/13/2016

10

• ReflectRay(r,obj) – computes reflected ray (use obj normal at
intersection)

• RefractRay(r,obj) - computes refracted ray
• Note: ray is inside obj

• Shade(reflect_color,refract_color,obj) – compute
illumination given three components

SUB-ROUTINES

• Trace ray from each ray-object intersection point to light
sources

• If the ray intersects an object in between  point is shadowed from
the light source

SIMULATING SHADOWS

shadow = RayTrace(LightRay(obj,r,light));

return Shade(shadow,reflect_color,refract_color,obj);

11/13/2016

11

RAY TRACING: IDEA
Image PlaneEye

Refracted
Ray

Reflected
Ray

Light
Source

Shadow
Rays

• Generation of rays
• Intersection of rays with geometric primitives
• Geometric transformations
• Lighting and shading
• Speed: Reducing number of intersection tests

• E.g. use BSP trees or other types of space partitioning

RAY-TRACING: PRACTICALITIES

11/13/2016

12

• Camera Coordinate System
• Origin: C (camera position)
• Viewing direction: w
• Up vector: v
• u direction: u= wv

• Corresponds to viewing
transformation in rendering pipeline!

RAY-TRACING: GENERATION OF RAYS

v

w

x
C

• Distance to image plane: d
• Image resolution (in pixels):
• Image plane dimensions: l, r, t, b

• Pixel at position i, j ሺ݅ ൌ 0,… , ௫ܰ െ 1; ݆ ൌ 0,… , ௬ܰ െ 1ሻ

RAY-TRACING: GENERATION OF RAYS
v

w

u
C

௜ܲ ,௝ ൌ ܱ ൅ ݅ ൅ 0.5 ⋅
ݎ െ ݈

௫ܰ
⋅ ݑ െ ݆ ൅ 0.5 ⋅

ݐ െ ܾ

௬ܰ
⋅ Ԧݒ

௫ܰ, ௬ܰ

ൌ ܱ ൅ ݅ ൅ 0.5 ⋅ Δݑ ⋅ ݑ െ ݆ ൅ 0.5 ⋅ Δݒ ⋅ Ԧݒ

ࡻ ൌ ࡯ ൅ ݀࢝ ൅ ݈࢛ ൅ ࢜ݐ

11/13/2016

13

• Parametric equation of a ray:

where t= 0…

RAY-TRACING: GENERATION OF RAYS

jijiji tCCPtCt ,,,)()(R v

• Generation of rays
• Intersection of rays with geometric primitives
• Geometric transformations
• Lighting and shading
• Speed: Reducing number of intersection tests

• E.g. use BSP trees or other types of space partitioning

RAY-TRACING: PRACTICALITIES

11/13/2016

14

RAY-OBJECT INTERSECTIONS

• In OpenGL pipeline, we were limited to discrete objects:
• Triangle meshes

• In ray tracing, we can support analytic surfaces!
• No problem with interpolating z and normals, # of triangles, etc.

• Almost

• Core of ray-tracing  must be extremely efficient
• Usually involves solving a set of equations

• Using implicit formulas for primitives

RAY-OBJECT INTERSECTIONS

Example: Ray-Sphere intersection

ray:
(unit) sphere:
quadratic equation in t :

x t p v t y t p v t z t p v tx x y y z z() , () , ()     

p

v
x y z2 2 2 1  

0 1

2

1

2 2 2

2 2 2 2

2 2 2

      

     

   

() () ()

() ()

()

p v t p v t p v t

t v v v t p v p v p v

p p p

x x y y z z

x y z x x y y z z

x y z

11/13/2016

15

• Implicit functions:
• Spheres at arbitrary positions

• Same thing
• Conic sections (hyperboloids, ellipsoids, paraboloids, cones,

cylinders)
• Same thing (all are quadratic functions!)

• Higher order functions (e.g. tori and other quartic functions)
• In principle the same
• But root-finding difficult
• Numerical methods

RAY INTERSECTIONS WITH OTHER PRIMITIVES

• Polygons:
• First intersect ray with plane

• linear implicit function

• Then test whether point is inside or outside of polygon (2D test)

• For convex polygons
• Suffices to test whether point in on the right side of every boundary edge

RAY INTERSECTIONS WITH OTHER PRIMITIVES

11/13/2016

16

• Generation of rays
• Intersection of rays with geometric primitives
• Geometric transformations
• Lighting and shading
• Speed: Reducing number of intersection tests

• E.g. use BSP trees or other types of space partitioning

RAY-TRACING: PRACTICALITIES

• Note: rays replace perspective transformation
• Geometric Transformations:

• Similar goal as in rendering pipeline:
• Modeling scenes convenient using different coordinate systems for individual

objects
• Problem:

• Not all object representations are easy to transform
• This problem is fixed in rendering pipeline by restriction to polygons (affine

invariance!)

RAY-TRACING:
TRANSFORMATIONS

11/13/2016

17

• Ray Transformation:
• For intersection test, it is only important that ray is in same

coordinate system as object representation
• Transform all rays into object coordinates

• Transform camera point and ray direction by inverse of model/view
matrix

• Shading has to be done in world coordinates (where light
sources are given)

• Transform object space intersection point to world coordinates
• Thus have to keep both world and object-space ray

RAY-TRACING:
TRANSFORMATIONS

• Generation of rays
• Intersection of rays with geometric primitives
• Geometric transformations
• Lighting and shading
• Speed: Reducing number of intersection tests

• E.g. use BSP trees or other types of space partitioning

RAY-TRACING: PRACTICALITIES

11/13/2016

18

• Light sources:
• For the moment: point and directional lights
• More complex lights are possible

• Area lights
• Fluorescence

RAY-TRACING: DIRECT ILLUMINATION

• Local surface information (normal…)
• For implicit surfaces F(x,y,z)=0:

normal n(x,y,z) is gradient of F:

• Example:

RAY-TRACING: DIRECT ILLUMINATION

2222),,(rzyxzyxF 


















z

y

x

zyx

2

2

2

),,(n
Needs to be normalized!

݊ ,ݔ ,ݕ ݖ ൌ ܨߘ ,ݔ ,ݕ ݖ ൌ
,ݔሺܨ߲ ,ݕ ݔ߲/ሻݖ
,ݔሺܨ߲ ,ݕ ݕ߲/ሻݖ
,ݔሺܨ߲ ,ݕ ݖ߲/ሻݖ

11/13/2016

19

• For triangle meshes
• Interpolate per-vertex information as in rendering pipeline

• Phong shading!
• Same as discussed for rendering pipeline

• Difference to rendering pipeline:
• Have to compute Barycentric coordinates for every intersection point (e.g

plane equation for triangles)

RAY-TRACING: DIRECT ILLUMINATION

• Generation of rays
• Intersection of rays with geometric primitives
• Geometric transformations
• Lighting and shading
• Speed: Reducing number of intersection tests

RAY-TRACING: PRACTICALITIES

11/13/2016

20

• Basic algorithm is simple but VERY expensive
• Optimize…

• Reduce number of rays traced
• Reduce number of ray-object intersection calculations

• Parallelize
• Cluster
• GPU

• Methods
• Bounding Boxes
• Spatial Subdivision

• Visibility, Intersection/Collision
• Tree Pruning

OPTIMIZED RAY-TRACING

• Goal: reduce number of intersection tests per ray
• Lots of different approaches:

• (Hierarchical) bounding volumes
• Hierarchical space subdivision

• Octree, k-D tree, BSP tree

SPATIAL SUBDIVISION DATA STRUCTURES

11/13/2016

21

• Don’t test each ray against complex objects (e.g. triangle mesh)
• Do a quick conservative test first which eliminates most rays

• Surround complex object by simple, easy to test geometry (e.g. sphere
or axis-aligned box)

• Reduce false positives: make bounding volume as tight as possible!

BOUNDING VOLUMES: IDEA

• Extension of previous idea:
• Use bounding volumes for groups of objects

HIERARCHICAL BOUNDING
VOLUMES

11/13/2016

22

• For a plane, objects on the same side of plane as viewer
CANNOT be occluded by objects on other side

• Intersect closer side first
• if ray doesn’t intersect plane?

• can’t intersect other side!

• Idea:
• Recursively split space by planes
• Traverse resulting tree to establish

rendering/intersection order
• Test eye location w.r.t. each plane

BSP TREES: IDEA

BSP TREES: CONSTRUCTION

11/13/2016

23

BSP TREES: CONSTRUCTION

BSP TREES: CONSTRUCTION

11/13/2016

24

BSP TREES: CONSTRUCTION

BSP TREES: CONSTRUCTION

11/13/2016

25

BSP TREES: CONSTRUCTION

BSP TREES: CONSTRUCTION

11/13/2016

26

• But what if a splitting plane passes through an object?
• Duplicate (Consider object in both half-spaces)

SPLITTING OBJECTS

• Tree creation independent of viewpoint
• Preprocessing step

• Tree traversal uses ray origin
• Runtime, happens for many different rays (=different origins)

TRAVERSING BSP TREES

11/13/2016

27

BSP TREES: TRAVERSAL

BSP TREES: TRAVERSAL

11/13/2016

28

BSP TREES: TRAVERSAL

BSP TREES: TRAVERSAL

11/13/2016

29

BSP TREES: TRAVERSAL

BSP TREES: TRAVERSAL

11/13/2016

30

BSP TREES: TRAVERSAL

BSP TREES: TRAVERSAL

11/13/2016

31

• Each plane divides world into near and far
• For given ray, decide which side is near and which is far

• Check which side of plane viewpoint is on independently for each tree vertex
• Tree traversal differs depending on viewpoint!

• Recursive algorithm
• Intersect with near side
• If no intersection, and ray intersects the plane,

• Intersect with far side

TRAVERSING BSP TREES

Let v be a node, r a ray
Intersect(v, r)
if v is leaf
then

intersect r with each object in v and return closest or
nil if none found
near = child node in half space containing the origin of ray
far = the other child
hit = Intersect(near, r)
if hit is nil and ray intersects plane defined by v
then

hit = Intersect(far, r)
return hit

TRAVERSING BSP TREES

11/13/2016

32

• Useful demo:
• http://symbolcraft.com/graphics/bsp

BSP DEMO

• Pros:
• Simple, elegant scheme
• Faster intersections
• Correct version of painter’s algorithm back-to-front rendering

approach
• Still very popular for video games

• Cons:
• Slow(ish) to construct tree: O(n log n) to split, sort
• Splitting increases polygon count: O(n2) worst-case
• => Algorithm restricted to static scenes

SUMMARY: BSP TREES

11/13/2016

33

• Bounding Volumes:
• Find simple object completely enclosing complicated objects

• Boxes, spheres
• Hierarchically combine into larger bounding volumes

• Spatial subdivision data structure:
• Partition the whole space into cells

• Grids, octrees, (BSP trees)
• Simplifies and accelerates traversal
• Performance less dependent on order in which objects are inserted

SPATIAL SUBDIVISION DATA STRUCTURES

So far:
All lights were either point-shaped or directional

Both for ray-tracing and the rendering pipeline
Thus, at every point, we only need to compute lighting formula

and shadowing for ONE direction per light

In reality:
All lights have a finite area
Instead of just dealing with one direction, we now have to

integrate over all directions that go to the light source

SOFT SHADOWS: AREA LIGHT
SOURCES

11/13/2016

34

• Area lights produce soft shadows:
• In 2D:

AREA LIGHT SOURCES

Area light

Occluding surface

Receiving surface
Umbra
(core shadow)

Penumbra
(partial shadow)

• Point lights:
• Only one light direction:

• V is visibility of light (0 or 1)

•  is lighting
model (e.g.
diffuse or Phong)

AREA LIGHT SOURCES

Ireflected   V  Ilight

Point light

11/13/2016

35

• Area Lights:
• Infinitely many light rays
• Need to integrate

over all of them:

• Lighting model
visibility and
light intensity
can now be different
for every ray!

AREA LIGHT SOURCES

Ireflected  () V ()  Ilight ()  d
light
directions



Area light

• Rewrite the integration
• Instead of integrating over directions

integrate over points on the light source

• q point on reflecting surface
• p= F(s,t) point on the area light
• We are integrating over p

INTEGRATING OVER LIGHT SOURCE

 
ts

lightreflected dtdspIqpVqpqI
,

)()()()(

Ireflected  () V ()  Ilight ()  d
light
directions



11/13/2016

36

Problem:
Except for basic case not solvable analytically!

Largely due to the visibility term

So:
Use numerical integration = approximate light with lots of point

lights

INTEGRATION

• Regular grid of point lights
• Problem: Too regular

see 4 hard shadows

• Need LOTS of points
to avoid this problem

NUMERICAL INTEGRATION
Area light

11/13/2016

37

SOLUTION: MONTE-CARLO

• Next time!

