11/13/2016

MIDTERM 2

* Viewing /Projections (orthographic, perspective)

* Clipping

» Rasterization
« Scan conversion
+ Interpolation

+ Lighting and shading

+ Texturing. Bump/displacement/environment mapping.

» Shadow maps

* Depth test

+ ... and don't forget everything we learned before Midterm 1

1’

*<_UCRAD
MR -

=g, - §

11/13/2016

ILLUMINATION MODELS/ALGORITHMS

Local illumination - Fast Global illumination - Slow
Ignore real physics, approximate the look Physically based

Interaction of each object with light
+ Compute on surface (light to viewer)

Interactions between objects

ILLUMINATION MODELS/ALGORITHMS

Local illumination - Fast Global illumination - Slow
Ignore real physics, approximate the look Physically based
Interaction of each object with light Interactions between objects

+ Compute on surface (light to viewer)

Vertices | Vertay Shadar | [\Javtav Dact Denrnccinal
and attributes
> >
Depth test —» Framebuffer
Blending

11/13/2016

ILLUMINATION MODELS/ALGORITHMS

Local illumination - Fast Global illumination - Slow

Ignore real physics, approximate the look Physically based
Interactions between objects

Interaction of each object with light
« Compute on surface (light to viewer)

Vertices | Vartay Shadar | [\Javtav Dact Dearnccinal
and attributes
’ >
} Depth test —>» Framebuffer
Blending

WHAT WAS NON-PHYSICAL IN
LOCAL ILLUMINATION?

Vertices J Vertex Shader ‘ ’Vertex Post-Processing
and attributed | . .] —— - |

—

Ca SATRIS SIS

11/13/2016

GLOBAL ILLUMINATION ALGORITHMS

* Ray Tracing

« Path Tracing

 Photon Mapping

* Radiosity

« Metropolis light transport

HOW SHOULD GLOBAL ILLUMINATION WORK?

11/13/2016

HOW SHOULD GLOBAL ILLUMINATION WORK?

Simulate light Light
Image Plane

* As itis emitted from light Eye V Source
sources @ \\g/é

* As it bounces off objects / get
absorbed / refracted

+ As some of the rays hit the
camera/eye

Refracted
Ray

PROBLEM?

11/13/2016

RAY TRACING: IDEA

Eye |7 Image Plane Source

Refracted
Ray

RAY TRACING: IDEA

Light
Eye |7 Source
¥ %

X
Refracted
Ray

11/13/2016

RAY TRACING

* Invert the direction of rays!
+ Shoot rays from CAMERA through each pixel
* “Trace the rays back”

+ Simulate whatever the light rays do:
* Reflection
* Refraction

+ Each interaction of the ray with an object adds to the final color

 Those rays are never gonna hit the light source, so
+ Shoot “shadow rays” to compute direct illumination

REFLECTION 7

* Mirror effects 0|0
+ Perfect specular reflection

11/13/2016

Snell's Law
¢, sin@ =c,sinb,

HERRIK WANN JENSEL

BASIC RAY-TRACING ALGORITHM

RayTrace(r,scene)
obj = FirstIntersection(r,scene)

if (no obj) return BackgroundColor;
else {
if (Reflect(obj))
reflect_color = RayTrace(ReflectRay(r,obj));
else
reflect_color = Black;

if (Transparent(obj))

refract_color = RayTrace(RefractRay(r,obj));
else

refract_color = Black;

return Shade(reflect_color, refract_color, obj);

11/13/2016

ONE BIG BUG.... WHERE?

RayTrace(r,scene)
obj = FirstIntersection(r,scene)

if (no obj) return BackgroundColor;
else {
if (Reflect(obj))

else
reflect_color = Black;

if (Transparent(obj))

else
refract_color = Black;

reflect_color = RayTrace(ReflectRay(r,obj));

refract_color = RayTrace(RefractRay(r,obj));

return Shade(reflect_color, refract_color, obj);

WHEN TO STOP?

+ Algorithm above does not terminate...

* Termination Criteria
* No intersection

+ Contribution of secondary ray attenuated below threshold - each

reflection/refraction attenuates ray
» Maximal depth is reached

11/13/2016

SUB-ROUTINES

* ReflectRay(r,obj) - computes reflected ray (use obj normal at
intersection)

» RefractRay(r,obj) - computes refracted ray
* Note: ray is inside obj

« Shade(reflect_color,refract_color,obj) - compute
illumination given three components

SIMULATING SHADOWS

* Trace ray from each ray-object intersection point to light
sources

« If the ray intersects an object in between = point is shadowed from
the light source

shadow = RayTrace(LightRay(obj,r,light));

return Shade(shadow,reflect_color,refract_color,obj);

10

11/13/2016

RAY TRACING: IDEA

Light
Source

Ray

RAY-TRACING: PRACTICALITIES

* Generation of rays
» Intersection of rays with geometric primitives
« Geometric transformations
» Lighting and shading
» Speed: Reducing number of intersection tests
+ E.g. use BSP trees or other types of space partitioning

11

11/13/2016

RAY-TRACING: GENERATION OF RAYS

« Camera Coordinate System v
+ Origin: C (camera position)
+ Viewing direction: w
» Up vector: v
* u direction: u= wxv

C %

« Corresponds to viewing
transformation in rendering pipeline!

RAY-TRACING: GENERATION OF RAYS

» Distance to image plane: d v
« Image resolution (in pixels): Ny, N,,
« Image plane dimensions: I, r, t, b

+ Pixel at position i,j (i=0,..,N, = 1;j = 0,..,N, = 1) |/ _
L

O=C+dw+lu+tv

t—>b

P;,j=0+(i+0.5)- -u—(+0.5)- Y
Ny
=04+ ({+05) -Au-u—(G+05)-Av-v

12

11/13/2016

RAY-TRACING: GENERATION OF RAYS

- Parametric equation of a ray:
R;;()=C+t-(B;-C)=C+1t-v;;

where t=0...c

RAY-TRACING: PRACTICALITIES

* Generation of rays
- Intersection of rays with geometric primitives
« Geometric transformations
» Lighting and shading
» Speed: Reducing number of intersection tests
+ E.g. use BSP trees or other types of space partitioning

13

11/13/2016

RAY-OBJECT INTERSECTIONS

* In OpenGL pipeline, we were limited to discrete objects:
+ Triangle meshes

- In ray tracing, we can support analytic surfaces!

* No problem with interpolating z and normals, # of triangles, etc.

« Almost

RAY-OBJECT INTERSECTIONS

» Core of ray-tracing = must be extremely efficient

+ Usually involves solving a set of equations
+ Using implicit formulas for primitives

Example: Ray-Sphere intersection

ray: X()=p, +V, &, YO =p, +V,t, z(t)=p, +V,t v
(unit) sphere: x> +y* +2° =1 /
quadratic equation in t : P
0=(p, +V,1)* +(p, +V,) +(p, +V,)* -1

=t (Vg +V; +V;)+2t(p,V, + PV, +P,V,)

(P +py +pi)-1

14

11/13/2016

RAY INTERSECTIONS WITH OTHER PRIMITIVES

» Implicit functions:

* Spheres at arbitrary positions
+ Same thing
+ Conic sections (hyperboloids, ellipsoids, paraboloids, cones,
cylinders)
+ Same thing (all are quadratic functions!)
+ Higher order functions (e.g. tori and other quartic functions)
* In principle the same
* But root-finding difficult
* Numerical methods

RAY INTERSECTIONS WITH OTHER PRIMITIVES

* Polygons:

« First intersect ray with plane
+ linear implicit function

 Then test whether point is inside or outside of polygon (2D test)

» For convex polygons
+ Suffices to test whether point in on the right side of every boundary edge

15

11/13/2016

RAY-TRACING: PRACTICALITIES

* Generation of rays
- Intersection of rays with geometric primitives
« Geometric transformations
» Lighting and shading
» Speed: Reducing number of intersection tests
+ E.g. use BSP trees or other types of space partitioning

RAY-TRACING:
TRANSFORMATIONS

» Note: rays replace perspective transformation

« Geometric Transformations:

+ Similar goal as in rendering pipeline:
* Modeling scenes convenient using different coordinate systems for individual
objects

* Problem:

+ Not all object representations are easy to transform

+ This problem is fixed in rendering pipeline by restriction to polygons (affine
invariance!)

16

11/13/2016

RAY-TRACING:
TRANSFORMATIONS

* Ray Transformation:
« For intersection test, it is only important that ray is in same
coordinate system as object representation
« Transform all rays into object coordinates

+ Transform camera point and ray direction by inverse of model /view
matrix

+ Shading has to be done in world coordinates (where light
sources are given)
+ Transform object space intersection point to world coordinates
 Thus have to keep both world and object-space ray

RAY-TRACING: PRACTICALITIES

* Generation of rays
» Intersection of rays with geometric primitives
« Geometric transformations
- Lighting and shading
» Speed: Reducing number of intersection tests
+ E.g. use BSP trees or other types of space partitioning

17

11/13/2016

RAY-TRACING: DIRECT ILLUMINATION

« Light sources:
+ For the moment: point and directional lights
* More complex lights are possible

+ Area lights
 Fluorescence

RAY-TRACING: DIRECT ILLUMINATION

» Local surface information (normal...)
+ For implicit surfaces F(x,y,z)=0:
normal n(x,y,z) is gradient of F:

0F(x,y,z)/0x
n(x,y,z) =VF(x,y,z) = 0F(x,y,z)/0y
0F(x,y,z)/0z

+ Example:

F(X,y,2)=X"+Yy>+2> -1’
2X
n(x,y,z)=|2y
22

Needs to be normalized!

18

11/13/2016

RAY-TRACING: DIRECT ILLUMINATION

» For triangle meshes
* Interpolate per-vertex information as in rendering pipeline
+ Phong shading!
+ Same as discussed for rendering pipeline

+ Difference to rendering pipeline:
+ Have to compute Barycentric coordinates for every intersection point (e.g
plane equation for triangles)

RAY-TRACING: PRACTICALITIES

* Generation of rays

» Intersection of rays with geometric primitives
« Geometric transformations

» Lighting and shading

« Speed: Reducing number of intersection tests

19

11/13/2016

OPTIMIZED RAY-TRACING

+ Basic algorithm is simple but VERY expensive
* Optimize...
* Reduce number of rays traced
* Reduce number of ray-object intersection calculations

» Parallelize
» Cluster
- GPU

* Methods
* Bounding Boxes
* Spatial Subdivision
+ Visibility, Intersection/Collision
 Tree Pruning

SPATIAL SUBDIVISION DATA STRUCTURES

» Goal: reduce number of intersection tests per ray

* Lots of different approaches:
* (Hierarchical) bounding volumes

* Hierarchical space subdivision
e Octree, k-D tree, BSP tree

20

11/13/2016

BOUNDING VOLUMES: IDEA

- Don't test each ray against complex objects (e.g. triangle mesh)
» Do a quick conservative test first which eliminates most rays

» Surround complex object by simple, easy to test geometry (e.g. sphere

or axis-aligned box)
* Reduce false positives: make bounding volume as tight as possible!

HIERARCHICAL BOUNDING
VOLUMES

- Extension of previous idea:
+ Use bounding volumes for groups of objects

O O OO
©0 0| oo
o | b o
© o ® o O
o 9|4
o | C

21

11/13/2016

BSP TREES: IDEA

« For a plane, objects on the same side of plane as viewer
CANNOT be occluded by objects on other side

* Intersect closer side first

- if ray doesn’t intersect plane? 6

« can't intersect other side!

* Idea: @ 6 %
* Recursively split space by planes ﬁ

» Traverse resulting tree to establish
rendering /intersection order

+ Test eye location w.r.t. each plane %

A

BSP TREES: CONSTRUCTION

22

11/13/2016

BSP TREES: CONSTRUCTION

BSP TREES: CONSTRUCTION

23

11/13/2016

BSP TREES: CONSTRUCTION

24

11/13/2016

BSP TREES: CONSTRUCTION

BSP TREES: CONSTRUCTION

25

11/13/2016

SPLITTING OBJECTS

- But what if a splitting plane passes through an object?
* Duplicate (Consider object in both half-spaces)

TRAVERSING BSP TREES

- Tree creation independent of viewpoint
* Preprocessing step

« Tree traversal uses ray origin
* Runtime, happens for many different rays (=different origins)

26

11/13/2016

BSP TREES: TRAVERSAL

BSP TREES: TRAVERSAL

27

11/13/2016

BSP TREES: TRAVERSAL

BSP TREES: TRAVERSAL

28

11/13/2016

BSP TREES: TRAVERSAL

BSP TREES: TRAVERSAL

29

11/13/2016

BSP TREES: TRAVERSAL

BSP TREES: TRAVERSAL

30

11/13/2016

TRAVERSING BSP TREES

« Each plane divides world into near and far
« For given ray, decide which side is near and which is far
+ Check which side of plane viewpoint is on independently for each tree vertex
+ Tree traversal differs depending on viewpoint!
* Recursive algorithm
+ Intersect with near side

« If no intersection, and ray intersects the plane,
» Intersect with far side

TRAVERSING BSP TREES

Let v be a node, r a ray
Intersect(v, 1)

if v is leaf
then

intersect r with each object in v and return closest or
nil if none found

near = child node in half space containing the origin of ray
far = the other child

hit = Intersect(near, r)

if hit is nil and ray intersects plane defined by v

then

hit = Intersect(far,)
return hit

31

11/13/2016

BSP DEMO

« Useful demo:
+ _ http: //symbolcraft.com /graphics/bsp

SUMMARY: BSP TREES

* Pros:
« Simple, elegant scheme
» Faster intersections

+ Correct version of painter’s algorithm back-to-front rendering
approach

« Still very popular for video games

* Cons:
« Slow(ish) to construct tree: O(n log n) to split, sort
« Splitting increases polygon count: O(n?) worst-case
« => Algorithm restricted to static scenes

32

11/13/2016

SPATIAL SUBDIVISION DATA STRUCTURES

* Bounding Volumes:
+ Find simple object completely enclosing complicated objects
» Boxes, spheres
* Hierarchically combine into larger bounding volumes

» Spatial subdivision data structure:

« Partition the whole space into cells
* Grids, octrees, (BSP trees)
« Simplifies and accelerates traversal

+ Performance less dependent on order in which objects are inserted

SOFT SHADOWS: AREA LIGHT
SOURCES

mSo far:

mAll lights were either point-shaped or directional
m Both for ray-tracing and the rendering pipeline
mThus, at every point, we only need to compute lighting formula
and shadowing for ONE direction per light
mIn reality:
mAll lights have a finite area

mInstead of just dealing with one direction, we now have to
integrate over all directions that go to the light source

33

11/13/2016

AREA LIGHT SOURCES

* Area lights produce soft shadows:
* In 2D: - —7 Area light

*‘ Occluding surface

Receiving surface

Umbra Penumbra
(core shadow) (partial shadow)

AREA LIGHT SOURCES

« Point lights:
+ Only one light direction:
.Point light
letiectea = 2V - Ilight ;

« Vis visibility of light (O or 1)
* p is lighting

model (e.g.
diffuse or Phong)

34

11/13/2016

AREA LIGHT SOURCES

* Area Lights:
* Infinitely many light rays
* Need to integrate
over all of them:

Ireflected = J p(a)) V(a)) IIight(a)) do
light
directions

+ Lighting model
visibility and
light intensity
can now be different
for every ray!

Area light

INTEGRATING OVER LIGHT SOURCE

* Rewrite the integration
+ Instead of integrating over directions
Ireﬂected = J ,0(0)) -V (a)) ’ IIight(a)) -do

light
directions

integrate over points on the light source
letecea (D) = [P(P—=0)-V (P = Q)] g (P) - s -t

s,t
+ q point on reflecting surface
+ p=F(s,t) point on the area light
* We are integrating over p

35

11/13/2016

INTEGRATION

mProblem:
BmExcept for basic case not solvable analytically!
B Largely due to the visibility term
ESo:

mUse numerical integration = approximate light with lots of point
lights

NUMERICAL INTEGRATION

Area light

* Regular grid of point lights

* Problem: Too regular
see 4 hard shadows

* Need LOTS of points
to avoid this problem

36

11/13/2016

SOLUTION: MONTE-CARLO

* Next time!

37

