MIDTERM 2

- Viewing/Projections (orthographic, perspective)
- Clipping
- Rasterization
 - Scan conversion
 - Interpolation
- Lighting and shading
- Shadow maps
- Depth test
- ... and don't forget everything we learned before Midterm 1
ILLUMINATION MODELS/ALGORITHMS

Local illumination - Fast
Ignore real physics, approximate the look
Interaction of each object with light
 • Compute on surface (light to viewer)

Global illumination – Slow
Physically based
Interactions between objects
ILLUMINATION MODELS/ALGORITHMS

Local illumination - Fast
Ignore real physics, approximate the look
Interaction of each object with light
 • Compute on surface (light to viewer)

Global illumination – Slow
Physically based
Interactions between objects

WHAT WAS NON-PHYSICAL IN LOCAL ILLUMINATION?
GLOBAL ILLUMINATION ALGORITHMS

- Ray Tracing
- Path Tracing
- Photon Mapping
- Radiosity
- Metropolis light transport
- ...

HOW SHOULD GLOBAL ILLUMINATION WORK?
HOW SHOULD GLOBAL ILLUMINATION WORK?

Simulate light
• As it is emitted from light sources
• As it bounces off objects / get absorbed / refracted
• As some of the rays hit the camera/eye

PROBLEM?
RAY TRACING: IDEA

Eye → Image Plane → Reflected Ray → Light Source

Refraacted Ray

Eye → Image Plane → Reflected Ray → Shadow Rays

Light Source

Refraacted Ray
RAY TRACING

• Invert the direction of rays!
• Shoot rays from CAMERA through each pixel
 • “Trace the rays back”
• Simulate whatever the light rays do:
 • Reflection
 • Refraction
 • …
• Each interaction of the ray with an object adds to the final color
• Those rays are never gonna hit the light source, so
 • Shoot “shadow rays” to compute direct illumination

REFLECTION

• Mirror effects
 • Perfect specular reflection
REFRACTION

- Interface between transparent object and surrounding medium
 - E.g. glass/air boundary
- Light ray breaks (changes direction) based on refractive indices c_1, c_2
 - Water $c = 1.33$, glass $c = 1.52$

Snell’s Law

$$c_1 \sin \theta_1 = c_2 \sin \theta_2$$

BASIC RAY-TRACING ALGORITHM

```python
RayTrace(r, scene):
    obj = FirstIntersection(r, scene)
    if no obj return BackgroundColor;
    else {
        if (Reflect(obj))
            reflect_color = RayTrace(ReflectRay(r, obj));
        else
            reflect_color = Black;
        if (Transparent(obj))
            refract_color = RayTrace(RefractRay(r, obj));
        else
            refract_color = Black;
        return Shade(reflect_color, refract_color, obj);
    }
```
ONE BIG BUG....WHERE?

```
RayTrace(r,scene)
obj = FirstIntersection(r,scene)
if (no obj) return BackgroundColor;
else {
  if (Reflect(obj))
    reflect_color = RayTrace(ReflectRay(r,obj));
  else
    reflect_color = Black;
  
  if (Transparent(obj))
    refract_color = RayTrace(RefractRay(r,obj));
  else
    refract_color = Black;

  return Shade(reflect_color, refract_color, obj);
}
```

WHEN TO STOP?

• Algorithm above does not terminate...

• Termination Criteria
 • No intersection
 • Contribution of secondary ray attenuated below threshold – each reflection/refraction attenuates ray
 • Maximal depth is reached
SUB-ROUTINES

- ReflectRay(r, obj) – computes reflected ray (use obj normal at intersection)
- RefractRay(r, obj) - computes refracted ray
 - Note: ray is inside obj
- Shade(reflect_color, refract_color, obj) – compute illumination given three components

SIMULATING SHADOWS

- Trace ray from each ray-object intersection point to light sources
 - If the ray intersects an object in between ⇒ point is shadowed from the light source

```python
shadow = RayTrace(LightRay(obj, r, light));

return Shade(shadow, reflect_color, refract_color, obj);
```
RAY TRACING: IDEA

- Generation of rays
- Intersection of rays with geometric primitives
- Geometric transformations
- Lighting and shading
- Speed: Reducing number of intersection tests
 - E.g. use BSP trees or other types of space partitioning

RAY-TRACING: PRACTICALITIES
RAY-TRACING: GENERATION OF RAYS

• Camera Coordinate System
 • Origin: C (camera position)
 • Viewing direction: w
 • Up vector: v
 • u direction: \(u = w \times v \)

• Corresponds to viewing transformation in rendering pipeline!

RAY-TRACING: GENERATION OF RAYS

• Distance to image plane: \(d \)
• Image resolution (in pixels): \(N_x, N_y \)
• Image plane dimensions: \(l, r, t, b \)
• Pixel at position \(i, j \) (\(i = 0, \ldots, N_x - 1; j = 0, \ldots, N_y - 1 \))

\[
O = C + d\hat{w} + l\hat{u} + t\hat{v}
\]

\[
P_{i,j} = O + (i + 0.5) \cdot \frac{r - l}{N_x} \cdot \hat{u} - (j + 0.5) \cdot \frac{t - b}{N_y} \cdot \hat{v}
\]

\[
= O + (i + 0.5) \cdot \Delta u \cdot \hat{u} - (j + 0.5) \cdot \Delta v \cdot \hat{v}
\]
RAY-TRACING: GENERATION OF RAYS

- Parametric equation of a ray:
 \[R_{i,j}(t) = C + t \cdot (P_{i,j} - C) = C + t \cdot v_{i,j} \]
 where \(t = 0 \ldots \infty \)

RAY-TRACING: PRACTICALITIES

- Generation of rays
- **Intersection of rays with geometric primitives**
- Geometric transformations
- Lighting and shading
- Speed: Reducing number of intersection tests
 - E.g. use BSP trees or other types of space partitioning
RAY-OBJECT INTERSECTIONS

• In OpenGL pipeline, we were limited to discrete objects:
 • Triangle meshes
• In ray tracing, we can support analytic surfaces!
 • No problem with interpolating z and normals, # of triangles, etc.
 • Almost

Core of ray-tracing \Rightarrow must be extremely efficient
• Usually involves solving a set of equations
 • Using implicit formulas for primitives

Example: Ray-Sphere intersection

ray: $x(t) = p_x + v_x t,\ y(t) = p_y + v_y t,\ z(t) = p_z + v_z t$
(unit) sphere: $x^2 + y^2 + z^2 = 1$

quadratic equation in t:

$0 = (p_x + v_x t)^2 + (p_y + v_y t)^2 + (p_z + v_z t)^2 - 1$
$= t^2 (v_x^2 + v_y^2 + v_z^2) + 2t(p_x v_x + p_y v_y + p_z v_z)$
$+ (p_x^2 + p_y^2 + p_z^2) - 1$
RAY INTERSECTIONS WITH OTHER PRIMITIVES

• Implicit functions:
 • Spheres at arbitrary positions
 • Same thing
 • Conic sections (hyperboloids, ellipsoids, paraboloids, cones, cylinders)
 • Same thing (all are quadratic functions!)
 • Higher order functions (e.g. tori and other quartic functions)
 • In principle the same
 • But root-finding difficult
 • Numerical methods

RAY INTERSECTIONS WITH OTHER PRIMITIVES

• Polygons:
 • First intersect ray with plane
 • linear implicit function
 • Then test whether point is inside or outside of polygon (2D test)

• For convex polygons
 • Sufﬁces to test whether point in on the right side of every boundary edge
RAY-TRACING: PRACTICALITIES

• Generation of rays
• Intersection of rays with geometric primitives
• Geometric transformations
• Lighting and shading
• Speed: Reducing number of intersection tests
 • E.g. use BSP trees or other types of space partitioning

RAY-TRACING: TRANSFORMATIONS

• Note: rays replace perspective transformation
• Geometric Transformations:
 • Similar goal as in rendering pipeline:
 • Modeling scenes convenient using different coordinate systems for individual objects
 • Problem:
 • Not all object representations are easy to transform
 • This problem is fixed in rendering pipeline by restriction to polygons (affine invariance)
RAY-TRACING: TRANSFORMATIONS

• Ray Transformation:
 • For intersection test, it is only important that ray is in same coordinate system as object representation
 • Transform all rays into object coordinates
 • Transform camera point and ray direction by inverse of model/view matrix
 • Shading has to be done in world coordinates (where light sources are given)
 • Transform object space intersection point to world coordinates
 • Thus have to keep both world and object-space ray

RAY-TRACING: PRACTICALITIES

• Generation of rays
• Intersection of rays with geometric primitives
• Geometric transformations
• Lighting and shading
• Speed: Reducing number of intersection tests
 • E.g. use BSP trees or other types of space partitioning
RAY-TRACING: DIRECT ILLUMINATION

• Light sources:
 • For the moment: point and directional lights
 • More complex lights are possible
 • Area lights
 • Fluorescence

RAY-TRACING: DIRECT ILLUMINATION

• Local surface information (normal...)
 • For implicit surfaces $F(x,y,z)=0$:
 normal $\mathbf{n}(x,y,z)$ is gradient of F:
 $$\mathbf{n}(x,y,z) = \nabla F(x,y,z) = \frac{\partial F(x,y,z)}{\partial x} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

 • Example:
 $$F(x,y,z) = x^2 + y^2 + z^2 - r^2$$
 $$\mathbf{n}(x,y,z) = \begin{pmatrix} 2x \\ 2y \\ 2z \end{pmatrix}$$

 Needs to be normalized!
RAY-TRACING: DIRECT ILLUMINATION

• For triangle meshes
 • Interpolate per-vertex information as in rendering pipeline
 • Phong shading!
 • Same as discussed for rendering pipeline

• Difference to rendering pipeline:
 • Have to compute Barycentric coordinates for every intersection point (e.g. plane equation for triangles)

RAY-TRACING: PRACTICALITIES

• Generation of rays
• Intersection of rays with geometric primitives
• Geometric transformations
• Lighting and shading
• Speed: Reducing number of intersection tests
OPTIMIZED RAY-TRACING

• Basic algorithm is simple but VERY expensive
• Optimize...
 • Reduce number of rays traced
 • Reduce number of ray-object intersection calculations
• Parallelize
 • Cluster
 • GPU
• Methods
 • Bounding Boxes
 • Spatial Subdivision
 • Visibility, Intersection/Collision
 • Tree Pruning

SPATIAL SUBDIVISION DATA STRUCTURES

• Goal: reduce number of intersection tests per ray
• Lots of different approaches:
 • (Hierarchical) bounding volumes
 • Hierarchical space subdivision
 • Octree, k-D tree, BSP tree
BOUNDING VOLUMES: IDEA

- Don’t test each ray against complex objects (e.g. triangle mesh)
- Do a quick *conservative* test first which eliminates most rays
 - Surround complex object by simple, easy to test geometry (e.g. sphere or axis-aligned box)
 - Reduce false positives: make bounding volume as tight as possible!

HIERARCHICAL BOUNDING VOLUMES

- Extension of previous idea:
 - Use bounding volumes for groups of objects
BSP TREES: IDEA

• For a plane, objects on the same side of plane as viewer CANNOT be occluded by objects on other side
• Intersect closer side first
• if ray doesn’t intersect plane?
 • can’t intersect other side!
• Idea:
 • Recursively split space by planes
 • Traverse resulting tree to establish rendering/intersection order
 • Test eye location w.r.t. each plane

BSP TREES: CONSTRUCTION
BSP TREES: CONSTRUCTION
BSP TREES: CONSTRUCTION
SPLITTING OBJECTS

• But what if a splitting plane passes through an object?
 • Duplicate (Consider object in both half-spaces)

TRAVERSING BSP TREES

• Tree creation independent of viewpoint
 • Preprocessing step
• Tree traversal uses ray origin
 • Runtime, happens for many different rays (=different origins)
BSP TREES: TRAVERSAL
BSP TREES: TRAVERSAL
• Each plane divides world into near and far
 • For given ray, decide which side is near and which is far
 • Check which side of plane viewpoint is on independently for each tree vertex
 • Tree traversal differs depending on viewpoint!
 • Recursive algorithm
 • Intersect with near side
 • If no intersection, and ray intersects the plane,
 • Intersect with far side

TRAVERSING BSP TREES

Let \(v \) be a node, \(r \) a ray
\[\text{Intersect}(v, r)\]
\[\text{if } v \text{ is leaf } \]
\[\text{then}\]
 \[\text{intersect } r \text{ with each object in } v \text{ and return closest or nil if none found}\]
\[\text{near} = \text{child node in half space containing the origin of } r\]
\[\text{far} = \text{the other child}\]
\[\text{hit} = \text{Intersect}(\text{near}, r)\]
\[\text{if hit is nil and } r \text{ intersects plane defined by } v\]
\[\text{then}\]
 \[\text{hit} = \text{Intersect}(\text{far}, r)\]
\[\text{return } \text{hit}\]
BSP DEMO

• Useful demo:
 - http://symbolcraft.com/graphics/bsp

SUMMARY: BSP TREES

• Pros:
 • Simple, elegant scheme
 • Faster intersections
 • Correct version of painter's algorithm back-to-front rendering approach
 • Still very popular for video games

• Cons:
 • Slow(ish) to construct tree: $O(n \log n)$ to split, sort
 • Splitting increases polygon count: $O(n^2)$ worst-case
 • => Algorithm restricted to static scenes
SPATIAL SUBDIVISION DATA STRUCTURES

• Bounding Volumes:
 • Find simple object completely enclosing complicated objects
 • Boxes, spheres
 • Hierarchically combine into larger bounding volumes

• Spatial subdivision data structure:
 • Partition the whole space into cells
 • Grids, octrees, (BSP trees)
 • Simplifies and accelerates traversal
 • Performance less dependent on order in which objects are inserted

SOFTWARE SHADOWS: AREA LIGHT SOURCES

■ So far:
 ■ All lights were either point-shaped or directional
 ■ Both for ray-tracing and the rendering pipeline
 ■ Thus, at every point, we only need to compute lighting formula and shadowing for ONE direction per light

■ In reality:
 ■ All lights have a finite area
 ■ Instead of just dealing with one direction, we now have to integrate over all directions that go to the light source
AREA LIGHT SOURCES

• Area lights produce soft shadows:
 • In 2D:

 ![Diagram of area light sources](image)

 - Umbra (core shadow)
 - Penumbra (partial shadow)

 - Area light
 - Occluding surface
 - Receiving surface

AREA LIGHT SOURCES

• Point lights:
 • Only one light direction:

 \[I_{\text{reflected}} = \rho \cdot V \cdot I_{\text{light}} \]

 • \(V \) is visibility of light (0 or 1)

 • \(\rho \) is lighting model (e.g., diffuse or Phong)

 ![Diagram of point light](image)
AREA LIGHT SOURCES

- Area Lights:
 - Infinitely many light rays
 - Need to integrate over all of them:
 \[I_{\text{reflected}} = \int_{\text{light directions}} \rho(\omega) \cdot V(\omega) \cdot I_{\text{light}}(\omega) \cdot d\omega \]
 - Lighting model visibility and light intensity can now be different for every ray!

INTEGRATING OVER LIGHT SOURCE

- Rewrite the integration
 - Instead of integrating over directions
 \[I_{\text{reflected}} = \int_{\text{light directions}} \rho(\omega) \cdot V(\omega) \cdot I_{\text{light}}(\omega) \cdot d\omega \]
 - Integrate over points on the light source
 \[I_{\text{reflected}}(q) = \int \rho(p - q) \cdot V(p - q) I_{\text{light}}(p) \cdot ds \cdot dt \]
 - \(q \) point on reflecting surface
 - \(p = F(s,t) \) point on the area light
 - We are integrating over \(p \)
INTEGRATION

- Problem:
 - Except for basic case not solvable analytically!
 - Largely due to the visibility term
- So:
 - Use numerical integration = approximate light with lots of point lights

NUMERICAL INTEGRATION

- Regular grid of point lights
 - Problem: Too regular see 4 hard shadows
 - Need LOTS of points to avoid this problem
SOLUTION: MONTE-CARLO

- Next time!