
CPSC 314
21 – DEPTH TEST

Textbook: 11.1

UGRAD.CS.UBC.CA/~CS314
Alla Sheffer

2016

THE RENDERING PIPELINE

• Object Space Methods:
• Perform in 3D before scan conversion

• E.g. Painter’s algorithm
• Usually independent of resolution

• Independent of output device (screen/printer etc.)

• Image Space Methods:
• Work on per-pixel/per fragment basis after scan conversion
• Z-Buffer/Depth Buffer
• Much faster, but resolution dependent

HIDDEN SURFACE REMOVAL

• What happens if multiple primitives occupy the same pixel
on the screen?

• Which is allowed to paint the pixel?

THE Z-BUFFER ALGORITHM

• Idea: retain depth after projection transform

• Each vertex maintains z coordinate
• Relative to eye point
• To compute z per pixel use barycentric coordinates

• Don’t forget about perspective correction

• Or maybe fragment shader modifies z

THE Z-BUFFER ALGORITHM

• Augment color framebuffer with Z-buffer: Z per pixel
• Also called depth buffer
• First initialize all pixel depths to  (depth = far)

• When scan converting: interpolate depth (z) across polygon
• Check z-buffer before storing pixel color in framebuffer and

storing depth in z-buffer
• don’t write pixel if its z value is more distant than the z value

already stored there

THE Z-BUFFER ALGORITHM

• Store (r,g,b,z) for each pixel
• typically 8+8+8+24 bits, can be more

Z-BUFFER

for all i,j {
Depth[i,j] = MAX_DEPTH
Image[i,j] = BACKGROUND_COLOUR
}
for all polygons P {

for all pixels in P {
if (Z_pixel < Depth[i,j]) {

Image[i,j] = C_pixel
Depth[i,j] = Z_pixel

}
}

}

• Use barycentric coordinates
• Interpolate z like other parameters

• E.g. color
• Use one of three formulas

• Plane/edge walk/barycentric

INTERPOLATING Z

• History:
• Object space algorithms were proposed when memory was

expensive
• First 512x512 framebuffer was >$50,000!

• Radical new approach at the time
• The big idea:

• Resolve visibility independently at each pixel

THE Z-BUFFER ALGORITHM (MID-70’S)

• Reminder: projective transformation maps eye-space z to generic
z-range (NDC)

• Simple example:

• Thus:

DEPTH TEST PRECISION















































































10100
00

0010
0001

1
z
y
x

baz
y
x

T

Therefore, depth-buffer essentially stores -1/z, rather than z!
• Issue with integer depth buffers

• High precision for near objects
• Low precision for far objects

DEPTH TEST PRECISION

-zeye

zNDC

-n -f

 Low precision can lead to depth fighting for far objects
 Two different depths in eye space get mapped to same depth in framebuffer
 Which object “wins” depends on drawing order and scan-conversion

 Gets worse for larger ratios f:n
 Rule of thumb: f:n < 1000 for 24 bit depth buffer

With 16 bits cannot discern cm differences in objects at 1
km distance

DEPTH TEST PRECISION

HOW NEAR AND FAR PLANES AFFECT
PRECISION

• How much memory does the Z-buffer use?
• Does the image rendered depend on the drawing order?
• Does the time to render the image depend on the drawing order?
• How does Z-buffer load scale with visible polygons? with

framebuffer resolution?

Z-BUFFER ALGORITHM QUESTIONS

• Simple!
• Easy to implement in hardware

• Hardware support in all graphics cards today

• Polygons can be processed in arbitrary order
• Easily handles polygon interpenetration

Z-BUFFER PROS

• Poor for scenes with high depth complexity
• Need to render all polygons, even if

most are invisible

• Shared edges/overlaps handled inconsistently
• Ordering dependent

Z-BUFFER CONS

eye

• Requires more memory
• (e.g. 1280x1024x32 bits, depends on the implementation)

• Requires fast memory
• Read-Modify-Write in inner loop

• Hard to simulate transparent polygons
• We throw away color of polygons behind closest one
• Works if polygons ordered back-to-front

• Extra work throws away much of the speed advantage

Z-BUFFER CONS

• Determine visibility on object or polygon level
• Using camera coordinates

• Resolution independent
• Explicitly compute visible portions of polygons

• Early in pipeline
• After clipping

• Requires depth-sorting
• Painter’s algorithm
• BSP trees

OBJECT SPACE ALGORITHMS

• For most interesting scenes, some polygons overlap

• To render correct image need to determine which polygons
occlude which

OCCLUSION

• Order & render the polygons from back to front, “painting
over” previous polygons

• Draw cyan, then green, then red
• Will this work in general?

PAINTER’S ALGORITHM

• Intersecting polygons present a problem
• Even non-intersecting polygons can form a cycle with no

valid visibility order:

PAINTER’S ALGORITHM: PROBLEMS

