
CPSC 314
21 – DEPTH TEST

Textbook: 11.1

UGRAD.CS.UBC.CA/~CS314
Alla Sheffer

2016

THE RENDERING PIPELINE

• Object Space Methods:
• Perform in 3D before scan conversion

• E.g. Painter’s algorithm
• Usually independent of resolution

• Independent of output device (screen/printer etc.)

• Image Space Methods:
• Work on per-pixel/per fragment basis after scan conversion
• Z-Buffer/Depth Buffer
• Much faster, but resolution dependent

HIDDEN SURFACE REMOVAL

• What happens if multiple primitives occupy the same pixel
on the screen?

• Which is allowed to paint the pixel?

THE Z-BUFFER ALGORITHM

• Idea: retain depth after projection transform

• Each vertex maintains z coordinate
• Relative to eye point
• To compute z per pixel use barycentric coordinates

• Don’t forget about perspective correction

• Or maybe fragment shader modifies z

THE Z-BUFFER ALGORITHM

• Augment color framebuffer with Z-buffer: Z per pixel
• Also called depth buffer
• First initialize all pixel depths to (depth = far)

• When scan converting: interpolate depth (z) across polygon
• Check z-buffer before storing pixel color in framebuffer and

storing depth in z-buffer
• don’t write pixel if its z value is more distant than the z value

already stored there

THE Z-BUFFER ALGORITHM

• Store (r,g,b,z) for each pixel
• typically 8+8+8+24 bits, can be more

Z-BUFFER

for all i,j {
Depth[i,j] = MAX_DEPTH
Image[i,j] = BACKGROUND_COLOUR
}
for all polygons P {

for all pixels in P {
if (Z_pixel < Depth[i,j]) {

Image[i,j] = C_pixel
Depth[i,j] = Z_pixel

}
}

}

• Use barycentric coordinates
• Interpolate z like other parameters

• E.g. color
• Use one of three formulas

• Plane/edge walk/barycentric

INTERPOLATING Z

• History:
• Object space algorithms were proposed when memory was

expensive
• First 512x512 framebuffer was >$50,000!

• Radical new approach at the time
• The big idea:

• Resolve visibility independently at each pixel

THE Z-BUFFER ALGORITHM (MID-70’S)

• Reminder: projective transformation maps eye-space z to generic
z-range (NDC)

• Simple example:

• Thus:

DEPTH TEST PRECISION

10100
00

0010
0001

1
z
y
x

baz
y
x

T

Therefore, depth-buffer essentially stores -1/z, rather than z!
• Issue with integer depth buffers

• High precision for near objects
• Low precision for far objects

DEPTH TEST PRECISION

-zeye

zNDC

-n -f

 Low precision can lead to depth fighting for far objects
 Two different depths in eye space get mapped to same depth in framebuffer
 Which object “wins” depends on drawing order and scan-conversion

 Gets worse for larger ratios f:n
 Rule of thumb: f:n < 1000 for 24 bit depth buffer

With 16 bits cannot discern cm differences in objects at 1
km distance

DEPTH TEST PRECISION

HOW NEAR AND FAR PLANES AFFECT
PRECISION

• How much memory does the Z-buffer use?
• Does the image rendered depend on the drawing order?
• Does the time to render the image depend on the drawing order?
• How does Z-buffer load scale with visible polygons? with

framebuffer resolution?

Z-BUFFER ALGORITHM QUESTIONS

• Simple!
• Easy to implement in hardware

• Hardware support in all graphics cards today

• Polygons can be processed in arbitrary order
• Easily handles polygon interpenetration

Z-BUFFER PROS

• Poor for scenes with high depth complexity
• Need to render all polygons, even if

most are invisible

• Shared edges/overlaps handled inconsistently
• Ordering dependent

Z-BUFFER CONS

eye

• Requires more memory
• (e.g. 1280x1024x32 bits, depends on the implementation)

• Requires fast memory
• Read-Modify-Write in inner loop

• Hard to simulate transparent polygons
• We throw away color of polygons behind closest one
• Works if polygons ordered back-to-front

• Extra work throws away much of the speed advantage

Z-BUFFER CONS

• Determine visibility on object or polygon level
• Using camera coordinates

• Resolution independent
• Explicitly compute visible portions of polygons

• Early in pipeline
• After clipping

• Requires depth-sorting
• Painter’s algorithm
• BSP trees

OBJECT SPACE ALGORITHMS

• For most interesting scenes, some polygons overlap

• To render correct image need to determine which polygons
occlude which

OCCLUSION

• Order & render the polygons from back to front, “painting
over” previous polygons

• Draw cyan, then green, then red
• Will this work in general?

PAINTER’S ALGORITHM

• Intersecting polygons present a problem
• Even non-intersecting polygons can form a cycle with no

valid visibility order:

PAINTER’S ALGORITHM: PROBLEMS

