CPSC 314 19 – TEXTURE MAPPING

Textbook: 15 13 (optional)

UGRAD.CS.UBC.CA/~CS314

Alla Sheffer 2016

TEXTURE MAPPING

- real life objects have nonuniform colors, normals
- to generate realistic objects, reproduce coloring & normal variations = texture
- can often replace complex geometric details

TEXTURE MAPPING

- hide geometric simplicity
 - images convey illusion of geometry
 - map a brick wall texture on a flat polygon
 - create bumpy effect on surface
- usually:

associate 2D information with a surface in 3D

- point on surface \leftrightarrow point in texture
- "paint" image onto polygon

COLOR TEXTURE MAPPING

- define color (RGB) for each point on object surface
- other:
 - volumetric texture
 - procedural texture

2D TEXTURING = PARAMETERIZATION

SURFACE TEXTURE

- Define texture pattern over (u,v) domain (Image)
 - Image 2D array of "texels"
- Assign (u,v) coordinates to each point on object surface
 - How: depends on surface type
- For polygons (triangle)
 - Inside use barycentric coordinates
 - For vertices need mapping function (artist/programmer)

TEXTURE MAPPING EXAMPLE

FRACTIONAL TEXTURE COORDINATES

THREE.JS

```
• pass texture as a uniform:
```

```
var uniforms = {
    texture1: { type: "t", value: THREE.ImageUtils.loadTexture( "texture.jpg" ) }};
var material = new THREE.ShaderMaterial( { uniforms, ...});
```

uv will be passed on to the vertex shader (no need to write this):
 attribute vec2 uv;

• use it, e.g., in Fragment Shader:

```
uniform sampler2D texture1;
varying vec2 texCoord;
vec4 texColor = texture2D(texture1, texCoord);
```

HOW TO USE COLOR TEXTURES

- Replace
 - Set fragment color to texture color

```
gl_FragColor = texColor;
```

- Modulate
 - Use texture color as reflection color in illumination equation

```
kd = texColor; ka = texColor;
gl_FragColor = ka*ia + kd*id*dotProduct + ...;
```

TEXTURE LOOKUP: TILING AND CLAMPING

- What if s or t is outside [0...1] ?
- Multiple choices
 - Use fractional part of texture coordinates
 - Cyclic repetition (repeat)
 - Clamp every component to range [0...1]
 - Re-use color values from texture image border

IN THREE.JS

var texture = THREE.ImageUtils.loadTexture(
"textures/water.jpg");

texture.wrapS = THREE.RepeatWrapping;

texture.wrapT = THREE.ClampToEdgeWrapping;

texture.repeat.set(4, 4);

TILED TEXTURE MAP

RECONSTRUCTION

(image courtesy of Kiriakos Kutulakos, U Rochester)

RECONSTRUCTION

- how to deal with:
 - pixels that are much larger than texels?
 - minification

- pixels that are much smaller than texels ?
 - magnification

MIPMAPPING

use "image pyramid" to precompute averaged versions of the texture

store whole pyramid in single block of memory

Without MIP-mapping

With MIP-mapping

MIPMAPS

- multum in parvo -- many things in a small place
 - prespecify a series of prefiltered texture maps of decreasing resolutions
 - requires more texture storage
 - avoid shimmering and flashing as objects move
- texture.generateMipmaps = true
 - automatically constructs a family of textures from original texture size down to 1x1
- texture.mipmaps[...]

with

MIPMAP STORAGE

• only 1/3 more space required

HOW TO INTERPOLATE S,T?

TEXTURE MAPPING

Texture coordinate interpolation

- Perspective foreshortening problem
- Also problematic for color interpolation, etc.

INTERPOLATION: SCREEN VS. WORLD SPACE

- Screen space interpolation incorrect under perspective
 - Problem ignored with shading, but artifacts more visible with texturing

INTERPOLATION: SCREEN VS. WORLD SPACE

- Screen space interpolation incorrect under perspective
 - Problem ignored with shading, but artifacts more visible with texturing

PERSPECTIVE - REMINDER

$$T\left(\begin{bmatrix} x\\ y\\ z\\ 1\end{bmatrix}\right) = \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & a & b\\ 0 & 0 & -1 & 0\end{bmatrix}\begin{bmatrix} x\\ y\\ z\\ 1\end{bmatrix} \qquad z_{NDC} = \frac{a \cdot z_{eye} + b}{z_{eye}} = a + \frac{b}{z_{eye}}$$

- Preserves order
 - BUT distorts distances

TEXTURE COORDINATE INTERPOLATION

- Perspective Correct Interpolation
- α , β , γ : Barycentric coordinates (2D) of point **P**
- s_0, s_1, s_2 : texture coordinates of vertices
- w_0, w_1, w_2 : homogenous coordinate of vertices

• Similarly for *t*

Derivation (similar triangles): <u>https://www.comp.nus.edu.sg/~lowkl/publications</u> <u>/lowk_persp_interp_techrep.pdf</u>

OTHER USES FOR TEXTURES

OTHER USES FOR TEXTURES

- usually provides colour, but ...
- can also use to control other material/object properties
 - surface normal (bump mapping)
 - reflected color (environment mapping)

BUMP MAPPING: NORMALS AS TEXTURE

- object surface often not smooth to recreate correctly need complex geometry model
- can control shape "effect" by locally perturbing surface normal
 - random perturbation
 - directional change over region

BUMP MAPPING

BUMP MAPPING

O'(u)

Lengthening or shortening O(u) using B(u)

N'(u)

The vectors to the 'new' surface

Normal/Bump mapping

EMBOSSING

- at transitions
 - rotate point's surface normal by θ or θ

BUMP MAPPING: LIMITATION

BUMP MAPPING: LIMITATION

Why don't we modify geometry instead of modifying normals?

DISPLACEMENT MAPPING

- bump mapping gets silhouettes wrong
 - shadows wrong too
- change surface geometry instead
 - only recently available with realtime graphics
 - need to subdivide surface

MESH WITH DISPLACEMENT

https://en.wikipedia.org/wiki/Displacement_map ping#/media/File:Displacement.jpg

ENVIRONMENT MAPPING

- cheap way to achieve reflective effect
 - generate image of surrounding
 - map to object as texture

ENVIRONMENT MAPPING

- used to model object that reflects surrounding textures to the eye
 - movie example: cyborg in Terminator 2
- different approaches
 - sphere, cube most popular
 - others possible too

SPHERE MAPPING

- texture is distorted fish-eye view
 - point camera at mirrored sphere
 - spherical texture mapping creates texture coordinates that correctly index into this texture map

- 6 planar textures, sides of cube
 - point camera in 6 different directions, facing out from origin

- direction of reflection vector *r* selects the face of the cube to be indexed
 - co-ordinate with largest magnitude
 - e.g., the vector (-0.2, 0.5, -0.84) selects the -Z face
 - remaining two coordinates select the pixel from the face.
- difficulty in interpolating across faces

calculate?

- direction of reflection vector *r* selects the face of the cube to be indexed
 - co-ordinate with largest magnitude
 - e.g., the vector (-0.2, 0.5, -0.84) selects the -Z face
 - remaining two coordinates select the pixel from the face.
- difficulty in interpolating across faces

ENVIRONMENT MAPS (EM)

- in theory, every object should have a separate EM
- in theory, every time something moves, you should re-compute EM
- "you'll be surprised at what you can get away with"

VOLUMETRIC TEXTURE

- define texture pattern over 3D domain 3D space containing the object
- texture function can be digitized or procedural
- for each point on object compute texture from point location in space
- e.g., ShaderToy
- computing is cheap, memory access not as much

PROCEDURAL TEXTURE EFFECTS: BOMBING

- randomly drop bombs of various shapes, sizes and orientation into texture space (store data in table)
 - for point P search table and determine if inside shape
 - if so, color by shape's color
 - otherwise, color by object's color

PERLIN NOISE: PROCEDURAL TEXTURES

- several good explanations
 - http://www.noisemachine.com/talk1
 - http://freespace.virgin.net/hugo.elias/models/m_perlin.htm
 - http://www.robo-murito.net/code/perlin-noise-math-faq.html

http://mrl.nyu.edu/~perlin/planet/

THE RENDERING PIPELINE

SHADOWS

SHADOWS

Need at least 2 shader passes:

1. Draw everything as it's viewed from the LIGHT SOURCE

SHADOW MAPPING

Need at least 2 shader passes:

1. Draw everything as it's viewed from the LIGHT SOURCE **Depth** per pixel ('depth map')

SHADOW MAPPING

Need at least 2 shader passes:

1. Draw everything as it's viewed from the LIGHT SOURCE Depth per pixel ('depth map') How?

SHADOWS (IDEA)

Need at least 2 shader passes:

- 1. Draw everything as it's viewed from the LIGHT SOURCE **Depth** per pixel ('depth map').
- 2. Now draw everything from CAMERA When computing color per pixel:
 - Find corresponding depth map pixel:
 D distance from light source
 - Is distance from me to the camera > D?
 - Yes: I am occluded! I'm in SHADOW.
 - No: I'm LIT!

SHADOWS (IDEA)

Need at least 2 shader passes:

- 1. Draw everything as it's viewed from the LIGHT SOURCE **Depth** per pixel ('depth map').
- 2. Now draw everything from CAMERA When computing color per pixel:
 - Find corresponding depth map pixel:
 D distance from light source
 - Is distance from me to the camera > D?
 - Yes: I am occluded! I'm in SHADOW.
 - No: I'm LIT!

PROBLEMS OF SHADOW MAPPING

PROBLEMS OF SHADOW MAPPING

- Hard shadow edges
 - Can be solved by several shadow map lookups

PROBLEMS OF SHADOW MAPPING

- Hard shadow edges
 - Do several shadow map lookups
- Shadow aliasing
 - Increase shadow map resolution
- Many variations of shadow mapping try to solve those problems

