
CPSC 314
19 – TEXTURE MAPPING

Textbook: 15
13 (optional)

UGRAD.CS.UBC.CA/~CS314
Alla Sheffer

2016

12

TEXTURE MAPPING
• real life objects have

nonuniform colors, normals
• to generate realistic objects,

reproduce coloring & normal
variations = texture

• can often replace complex
geometric details

TEXTURE MAPPING
• hide geometric simplicity

• images convey illusion of geometry
• map a brick wall texture on a flat polygon
• create bumpy effect on surface

• usually:
associate 2D information with a surface in 3D

• point on surface ↔ point in texture
• “paint” image onto polygon

COLOR TEXTURE MAPPING
• define color (RGB) for each point on object surface
• other:

• volumetric texture
• procedural texture

TEXTURE MAPPING

u

v

(u0,v0) (u1,v1)

(u2,v2)

0 1
0

1

(u, v) parameterization
sometimes called (s,t)

2D TEXTURING = PARAMETERIZATION

surface

world

parameter domain

atlas

3

2

parameterization

(u,v)(x,y,z)

• Define texture pattern over (u,v) domain (Image)
• Image – 2D array of “texels”

• Assign (u,v) coordinates to each point on object surface
• How: depends on surface type

• For polygons (triangle)
• Inside – use barycentric coordinates
• For vertices need mapping function (artist/programmer)

SURFACE TEXTURE

u

v

TEXTURE MAPPING EXAMPLE

+ =

FRACTIONAL TEXTURE COORDINATES

(0,0) (1,0)

(0,1) (1,1)

texture
image

THREE.JS
• pass texture as a uniform:

var uniforms = {
texture1: { type: "t", value: THREE.ImageUtils.loadTexture("texture.jpg") }};

var material = new THREE.ShaderMaterial({ uniforms, …});

• uv will be passed on to the vertex shader (no need to write this):
attribute vec2 uv;

• use it, e.g., in Fragment Shader:

uniform sampler2D texture1;
varying vec2 texCoord;
vec4 texColor = texture2D(texture1, texCoord);

HOW TO USE COLOR TEXTURES

• Replace
• Set fragment color to texture color

gl_FragColor = texColor;

• Modulate
• Use texture color as reflection color in illumination equation

kd = texColor; ka = texColor;
gl_FragColor = ka*ia + kd*id*dotProduct + …;

TEXTURE LOOKUP:
TILING AND CLAMPING
• What if s or t is outside [0…1] ?
• Multiple choices

• Use fractional part of texture
coordinates

• Cyclic repetition (repeat)

• Clamp every component to range [0…1]
• Re-use color values from texture

image border

IN THREE.JS

var texture = THREE.ImageUtils.loadTexture(
"textures/water.jpg");

texture.wrapS = THREE.RepeatWrapping;

texture.wrapT = THREE.ClampToEdgeWrapping;

texture.repeat.set(4, 4);

24

(1,0)

(0,0) (0,1)

(1,1)

TILED TEXTURE MAP

(4,4)(4,0)

(0,4)(0,0)

RECONSTRUCTION

(image courtesy of Kiriakos Kutulakos, U Rochester)

RECONSTRUCTION

• how to deal with:
• pixels that are much larger than texels?

• minification

• pixels that are much smaller than texels ?
• magnification

MIPMAPPING

Without MIP-mapping

With MIP-mapping

use “image pyramid” to precompute
averaged versions of the texture

store whole pyramid in
single block of memory

MIPMAPS
• multum in parvo -- many things in a small place

• prespecify a series of prefiltered texture maps of
decreasing resolutions

• requires more texture storage
• avoid shimmering and flashing as objects move

• texture.generateMipmaps = true
• automatically constructs a family of textures from original

texture size down to 1x1

• texture.mipmaps[…]

without with

MIPMAP STORAGE

• only 1/3 more space required

HOW TO INTERPOLATE S,T?

Texture coordinate interpolation
• Perspective foreshortening problem
• Also problematic for color interpolation, etc.

TEXTURE MAPPING

• Screen space interpolation incorrect under perspective
• Problem ignored with shading, but artifacts more visible with texturing

INTERPOLATION: SCREEN VS. WORLD SPACE

P1(x,y,z)

V0(x’,y’)

V1(x’,y’)

P0(x,y,z)

• Screen space interpolation incorrect under perspective
• Problem ignored with shading, but artifacts more visible with texturing

INTERPOLATION: SCREEN VS. WORLD SPACE

P1(x,y,z)

V0(x’,y’)

V1(x’,y’)

P0(x,y,z)

• Preserves order
• BUT distorts distances

PERSPECTIVE - REMINDER

10100
00

0010
0001

1
z
y
x

baz
y
x

T
eyez
ba

eyez

beyeza

NDCz

• Perspective Correct Interpolation
• , , : Barycentric coordinates (2D) of point P
• s0, s1, s2 : texture coordinates of vertices
• w0, w1,w2 : homogenous coordinate of vertices

• Similarly for t

TEXTURE COORDINATE INTERPOLATION

(s,t)?

210

221100

///
///

www
wswswss

, , , , , ,

, , ,

,
,

,

Derivation (similar triangles):
https://www.comp.nus.edu.sg/~lowkl/publications
/lowk_persp_interp_techrep.pdf

OTHER USES FOR TEXTURES

OTHER USES FOR TEXTURES
• usually provides colour, but …
• can also use to control other material/object properties

• surface normal (bump mapping)
• reflected color (environment mapping)

BUMP MAPPING: NORMALS AS TEXTURE
• object surface often not smooth – to recreate correctly

need complex geometry model
• can control shape “effect” by locally perturbing surface

normal
• random perturbation
• directional change over region

BUMP MAPPING

BUMP MAPPING

Normal/Bump mapping

EMBOSSING
• at transitions

• rotate point’s surface normal by θ or - θ

BUMP MAPPING: LIMITATION

BUMP MAPPING: LIMITATION
Why don’t we modify geometry instead of modifying normals?

DISPLACEMENT MAPPING

• bump mapping gets silhouettes wrong
• shadows wrong too

• change surface geometry instead
• only recently available with realtime

graphics
• need to subdivide surface

https://en.wikipedia.org/wiki/Displacement_map
ping#/media/File:Displacement.jpg

ENVIRONMENT MAPPING
• cheap way to achieve reflective effect

• generate image of surrounding
• map to object as texture

ENVIRONMENT MAPPING

• used to model object that reflects surrounding textures to
the eye

• movie example: cyborg in Terminator 2

• different approaches
• sphere, cube most popular
• others possible too

SPHERE MAPPING
• texture is distorted fish-eye view

• point camera at mirrored sphere
• spherical texture mapping creates texture coordinates that

correctly index into this texture map

CUBE MAPPING

• 6 planar textures, sides of cube
• point camera in 6 different directions, facing out from origin

CUBE MAPPING

A

B
C

E

F

D

CUBE MAPPING

• direction of reflection vector r selects the face of the cube to be indexed
• co-ordinate with largest magnitude

• e.g., the vector (-0.2, 0.5, -0.84) selects the –Z face

• remaining two coordinates select the pixel from the face.

• difficulty in interpolating across faces

CUBE MAPPING

• direction of reflection vector r selects the face of the cube to be indexed
• co-ordinate with largest magnitude

• e.g., the vector (-0.2, 0.5, -0.84) selects the –Z face

• remaining two coordinates select the pixel from the face.

• difficulty in interpolating across faces

how to
calculate?

ENVIRONMENT MAPS (EM)

• in theory, every object should have a separate EM
• in theory, every time something moves, you should re-compute EM
• “you’ll be surprised at what you can get away with”

VOLUMETRIC TEXTURE
• define texture pattern over 3D domain - 3D

space containing the object
• texture function can be digitized or

procedural
• for each point on object compute texture

from point location in space
• e.g., ShaderToy

• computing is cheap, memory access not as
much

PROCEDURAL TEXTURE EFFECTS:
BOMBING
• randomly drop bombs of various shapes, sizes and orientation

into texture space (store data in table)
• for point P search table and determine if inside shape

• if so, color by shape’s color
• otherwise, color by object’s color

PERLIN NOISE: PROCEDURAL
TEXTURES
• several good explanations

• http://www.noisemachine.com/talk1
• http://freespace.virgin.net/hugo.elias/models/m_perlin.htm
• http://www.robo-murito.net/code/perlin-noise-math-faq.html

http://mrl.nyu.edu/~perlin/planet/

THE RENDERING PIPELINE

SHADOWS

SHADOWS
Need at least 2 shader passes:

1. Draw everything as it’s viewed from the LIGHT SOURCE

SHADOW MAPPING
Need at least 2 shader passes:

1. Draw everything as it’s viewed from the LIGHT SOURCE
Depth per pixel (‘depth map’)

SHADOW MAPPING
Need at least 2 shader passes:

1. Draw everything as it’s viewed from the LIGHT SOURCE
Depth per pixel (‘depth map’) How?

SHADOWS (IDEA)
Need at least 2 shader passes:

1. Draw everything as it’s viewed from the LIGHT SOURCE
Depth per pixel (‘depth map’).

2. Now draw everything from CAMERA
When computing color per pixel:

• Find corresponding depth map pixel:
D - distance from light source

• Is distance from me to the camera > D?
• Yes: I am occluded! I’m in SHADOW.
• No: I’m LIT!

SHADOWS (IDEA)
Need at least 2 shader passes:

1. Draw everything as it’s viewed from the LIGHT SOURCE
Depth per pixel (‘depth map’).

2. Now draw everything from CAMERA
When computing color per pixel:

• Find corresponding depth map pixel:
D - distance from light source

• Is distance from me to the camera > D?
• Yes: I am occluded! I’m in SHADOW.
• No: I’m LIT!

PROBLEMS OF SHADOW MAPPING

PROBLEMS OF SHADOW MAPPING

• Hard shadow edges
• Can be solved by several shadow map lookups

PROBLEMS OF SHADOW MAPPING

• Hard shadow edges
• Do several shadow map lookups

• Shadow aliasing
• Increase shadow map resolution

• Many variations of shadow mapping
try to solve those problems

