11/13/2016

CPSC 314
17 - LIGHTING AND SHADING

s un
l

& UGRAD.CS.UBC.CA/~CS314
EEU& Sk 0
S N EERSheffer
W L 2016

THE RENDERING PIPELINE

Vertices Vertex Shader Vertex Post-Processing
and attributes

Modelview transform ‘ Viewport transform ‘
—> > | »
Per-vertex attributes Clipping
Rasterization Fragment Shader
> Scan conversion > Texturing/.. | | >
Interpolation Lighting/shading

Per-Sample Operations
> —>» Framebuffer

11/13/2016

LIGHTING/SHADING

* Goal
* Model the interaction of light with surfaces to render
realistic images
» Generate per (pixel /vertex) color

FACTORS

» Light sources
* Location, type & color

* Surface materials
» How surfaces reflect
light '
* Transport of light
» How light moves in a
scene

 Viewer position

11/13/2016

FACTORS

» Light sources
* Location, type & color

» Surface materials

« How surfaces reflect
light

* Transport of light

» How light moves in a
scene

 Viewer position

* How can we do this in
the pipeline?

ILLUMINATION MODELS/ALGORITHMS

Local illumination - Fast Global illumination - Slow
Ignore real physics, approximate the look (More) Physically based
Interaction of each object with light Interactions between objects

» Compute on surface (light to viewer)

11/13/2016

THE BIG PICTURE (BASIC)

+ Light: energy in a range of wavelengths
+ White light - all wavelengths
* Colored (e.g. red) - subset of wavelengths

« Surface “color” - reflected wavelength
« White - reflects all lengths
* Black - absorbs everything
* Colored (e.g. red) absorbs all but the reflected color

 Multiple light sources add (energy sums)

MATERIALS

» Surface reflectance:
+ [lluminate surface point with a ray of light from different directions
» How much light is reflected in each direction?

11/13/2016

BASIC TYPES

diffuse glossy mirror
s, :\U:

K e
E*S EOS ESS

REFLECTANCE DISTRIBUTION
MODEL

» Most surfaces exhibit complex reflectances
* Vary with incident and reflected directions.

* Model with combination - known as BRDF
« BRDF: Bidirectional Reflectance Distribution Function

VARV v

11/13/2016

BRDF MEASUREMENTS/PLOTS

. Light Folding Focusing Spectro-
ZD SIICC BOURCE mirror lens radiometer
, - PR

L
Polarize Aotor |

A

arourd =ample
{ Muotor 3)

DIFFUSE (LAMBERT)

Lambert's Cosine Law

i T
\\' 177 R\ W\ 127 .
::Mj' - Si“ 'ﬁijf}* "‘\“\;}' /L x\k. A b
i e — - — e

Cosine Law: Eg = E » cos(b)

Intuitively: cross-sectional area of
the “beam” intersecting an element
of surface area is smaller for greater
angles with the normal.

11/13/2016

COMPUTING DIFFUSE REFLECTION

Depends on angle of incidence: angle between surface
normal and incoming light | n

Liifruse = Ka Ligne €OS 0
In practice use vector arithmetic

Laifruse = Kg Liigne (ne])

Scalar (B/W intensity) or 3-tuple (color)
+ kg diffuse coefficient, surface color
* Ijigne incoming light intensity
* Luruse: OUtgoing light intensity (for diffuse reflection)

NB: Always normalize vectors used in lighting
* n, 1should be unit vectors

DIFFUSE LIGHTING EXAMPLES

+ Lambertian sphere from several lighting angles:

+ need only consider angles from 0° to 90°

11/13/2016

PHYSICS OF SPECULAR REFLECTION

« Geometry of specular (perfect mirror) reflection

* Snell’s law

n

(nehn

r =-l+2(n*hn

PHYSICS OF SPECULAR REFLECTION

« Geometry of specular (perfect mirror) reflection

* Snell’'s law
+ In GLSL: use reflect(-l,n)

n

(nehHn

r =-l+2(n*hHn

11/13/2016

EMPIRICAL APPROXIMATION

» Snell's law = perfect mirror-like surfaces

e But ..
» few surfaces exhibit perfect specularity
+ Gaze and reflection directions never EXACTLY coincide

- Expect most reflected light to travel in direction predicted
by Snell’s Law

« But some light may be reflected in a direction slightly off the
ideal reflected ray

* As angle from ideal reflected ray increases, we expect less
light to be reflected

EMPIRICAL APPROXIMATION

« Angular falloff i1

« How to model this falloff?

11/13/2016

PHONG LIGHTING

Most common lighting model in computer graphics (Phong Bui-Tuong, 1975)

n
Ispecular = ksIlight (COS ¢) >
e\
V_

— n -
Ispecular - ksIlight (V ¢ l')) Fl

4
¢: angle between r and view l 1

direction v /El_l— MQ)\

n, : purely empirical constant, varies
rate of falloff

k.: specular coefficient, highlight
color

no physical basis, “plastic” look

r

PHONG EXAMPLES

varying light position

varying Ils

99000

10

11/13/2016

ALTERNATIVE MODEL

Blinn-Phong model (Jim Blinn, 1977)

» Variation with better physical interpretation
+ h: halfway vector; r: roughness

| pecuiar = Ks -(h-m)""" -1 s withh = (1+v)/2

MATERIALS (LAST BIT)

- Light is linear

« If multiple rays illuminate the surface point the result is just the
sum of the individual reflections for each ray

S, (kg (n-1) + ko (r, -v)")

11

11/13/2016

AMBIENT LIGHT

 Non-directional light — environment light

* Object illuminated with same light everywhere
+ Looks like silhouette

« Illumination equation I =1k,
* | .- ambient light intensity
* k- fraction of this light reflected from surface

ILLUMINATION EQUATION (PHONG)

- If we take the previous formula and add ambient component:

Ioky + Z Ly(ka(n - 1,) + ks(r, - v)™)
D

12

11/13/2016

LIGHT SOURCE TYPES

« Point Light
+ light originates at a point

« Directional Light (point light at infinity)
« light rays are parallel
* Rays hit a planar surface at identical angles

* Spot Light
+ point light with limited angles

A\
/4

LIGHT SOURCE TYPES

« Point Light
« light originates at a point
+ defined by location only

» Directional Light (point light at infinity)
» light rays are parallel
+ Rays hit a planar surface at identical angles
+ defined by direction only
* Spot Light
+ point light with limited angles
+ defined by location, direction, and angle range

A\

/2
N

13

11/13/2016

WHICH LIGHTS/MATERIALS ARE
USED HERE?

LIGHT SOURCE FALLOFF

* Quadratic falloff (point- and spot lights)
 Brightness of objects depends on power per unit area that hits the
object
« The power per unit area for a point or spot light decreases
quadratically with distance

Area 4nr?

Area."ZIn(Zr)2

14

11/13/2016

ILLUMINATION EQUATION WITH ATTENUATION
» For multiple light sources:

et 200

(k (n-1)+k(r,-v)")

« d; distance between surface and light source + distance
between surface and viewer, A — attenuation function

L b A" 4

LIGHT

» Light has color

» Interacts with object color (r,g,b)
| =1k,
Lo =(lars Lags 1)
k = (kar9 kag > kab)

I_(Ir’ g’I) (Iar ar» ag ag’ ab ab)

* Blue light on white surface?
* Blue light on red surface?

15

11/13/2016

LIGHT AND MATERIAL SPECIFICATION

« Light source: amount of RGB light emitted

+ value = intensity per channel

e.g., (1.0,0.5,0.5)

* every light source emits ambient, diffuse, and specular light
 Materials: amount of RGB light reflected

« value represents percentage reflected

e.g., (0.0,1.0,0.5)

» Interaction: multiply components

* Red light (1,0,0) x green surface (0,1,0) = black (0,0,0)

NOTES ON SHADING

* To do all the calculations, we need to choose a coordinate
system
» Typically View Coordinate System
« We need to have
» Vertex Coordinates

* Normals
+ Light Positions/Directions

16

11/13/2016

WHEN TO APPLY LIGHTING MODEL?
OR WHERE DO NORMAL COME FROM?

per polygon per vertex per pixel
“flat shading” “Gouraud “per pixel lighting”
shading” “Phong shading”

Image ©

Flat Gouraud Phong ICn(ErerI[%Lrlétlg?Systems

WHEN TO APPLY LIGHTING MODEL?
OR WHERE DO NORMAL COME FROM?

“flat” = “Gouraud” = use “per pixel/Phong” =
constant face vertex normal, interpolate normal,
normal interpolate compute equation
vertex color per pixel
inside

Image ©
Intergraph
Computer Systems

Flat Gouraud Phong

17

11/13/2016

AMBIENT LIGHTING

37

38

18

11/13/2016

PER VERTEX SHADING

39

PER PIXEL SHADING

40

19

11/13/2016

CURVED SURFACES WITH PER-PIXEL SHADING

41

COMPLEX LIGHTING AND SHADING

42

20

11/13/2016

TEXTURE MAPPING

43

44

21

11/13/2016

REFLECTION MAPPING

ad T«

45

GLOBAL ILLUMINATION

22

11/13/2016

SUBSURFACE SCATTERING

TRANSFORMING NORMALS

23

11/13/2016

COMPUTING NORMALS

* polygon:
N N = (Pz_Pl)X(P3_P1)
é H(Pz _P1)X(P3 _PI)H
R P
N%

2
« assume vertices ordered CCW when viewed
from visible side of polygon

TRANSFORMING NORMALS

L [
L -

Line + Normal Transform both by same matrix Transformed line and correct normal

24

11/13/2016

TRANSFORMING NORMALS

» When transforming triangle(s) can we use the same
transformation to transform the normal & avoid re-
computation?

« What is a normal?

* Vector
+ Orthogonal (perpendicular) to plane/surface

+ Do standard transformations preserve orthogonality?
* Or angles in general?

FIRST THINGS FIRST

* Dot product notation: a - b

« Matrix notation: a’b
* Both a and b are columns

25

11/13/2016

PLANES AND NORMALS

Let’s take a plane Ax + By + Cz+ D =0
And two points on the plane: P;, P,
(A)BJCI*) ' (Pl _PZ) = 0
n- (Pl - Pz) =0

PLANES AND NORMALS

Let’s take a plane Ax + By + Cz+D =0
And two points on the plane: Py, P,
(A,B,C,*) : (Pl _Pz) =0
n-: (Pl — Pz) = 0

or, exactly the same:
TlTM_lM(Pl - Pz) =0

26

11/13/2016

PLANES AND NORMALS

Let’s take a plane Ax + By + Cz+ D =0
And two points on the plane: P;, P,
(A)BJCI*) ' (Pl _PZ) = 0
n-(P,—P,)=0
or, exactly the same:
n"M=IM(P, —P,) =0

After transformation M:
(m")T (MP, —MP,) =0

PLANES AND NORMALS

Let’s take a plane Ax + By + Cz+D =0

And two points on the plane: Py, P,
(A,B,C,*) : (Pl _Pz) =0
n-: (Pl — Pz) = 0
or, exactly the same:
M(Pl - Pz) == 0
After transformation M:
(MPl - MPz) == 0
So,
nTM—l — (nl)T
n' =M HTn

27

11/13/2016

TRANSFORMING NORMALS
n' =M Hn

Normals are
transformed by
Transpose of Inverse

IN THREE.JS

» In vertex shader:

pointInVCS = modelViewMatrix * vec4(position, 1.0);
normalInVCS = normalMatrix * normal;

transpose of inverse
of modelViewMatrix

28

11/13/2016

SOME HINTS ON
THEORY A3

SHAPES - CURVES/SURFACES

« Mathematical representations:
+ Explicit functions

» Parametric functions

+ Implicit functions

29

11/13/2016

SHAPES: EXPLICIT FUNCTIONS

« Curves: y :=sin(x)
* yis a function of x:
* Only works in 2D

» Surfaces:
+ z is a function of x and y:
+ Cannot define arbitrary shapes in 3D

Z :=sin(X) + cos(Y)

SHAPES: PARAMETRIC FUNCTIONS

» Curves:
+ 2D: x and y are functions of a parameter value t
* 3D: X, y, and z are functions of a parameter value t

cos(t)
C(t) :=| sin(t)
t

30

11/13/2016

SHAPES: PARAMETRIC FUNCTIONS

» Surfaces:
» Surface S is defined as a function of parameter values s, t
» Names of parameters can be different to match intuition:

cos(@)cos(H)

S(¢,0):=| sin(¢)cos(d)
sin(d)

SHAPES: IMPLICIT

» Surface (3D) or Curve (2D) defined by zero set (roots) of
function
* E.g

S(X,Y,2): X*+y*+2°-1=0

31

11/13/2016

HOW TO INTERSECT ?

» Two lines in 2D?

* Aline and a plane?

« Aline and a sphere?
 (Whiteboard)

32

