CPSC 314
 17 - LIGHTING AND SHADING

Textbook: 14

UGRAD.CS.UBC.CA/~CS314

THE RENDERING PIPELINE

Fragment Shader

[^0]
LIGHTING/SHADING

- Goal
- Model the interaction of light with surfaces to render realistic images
- Generate per (pixel/vertex) color

FACTORS

- Light sources
- Location, type \& color
- Surface materials
- How surfaces reflect light
- Transport of light
- How light moves in a scene
- Viewer position

FACTORS

- Light sources
- Location, type \& color
- Surface materials
- How surfaces reflect light
- Transport of light
- How light moves in a scene
- Viewer position
- How can we do this in the pipeline?

ILLUMINATION MODELS/ALGORITHMS

Local illumination - Fast
Ignore real physics, approximate the look Interaction of each object with light

- Compute on surface (light to viewer)

Global illumination - Slow
(More) Physically based Interactions between objects

THE BIG PICTURE (BASIC)

- Light: energy in a range of wavelengths
- White light - all wavelengths
- Colored (e.g. red) - subset of wavelengths
- Surface "color" - reflected wavelength
- White - reflects all lengths
- Black - absorbs everything
- Colored (e.g. red) absorbs all but the reflected color
- Multiple light sources add (energy sums)

MATERIALS

- Surface reflectance:
- Illuminate surface point with a ray of light from different directions
- How much light is reflected in each direction?

BASIC TYPES

REFLECTANCE DISTRIBUTION
 MODEL

- Most surfaces exhibit complex reflectances
- Vary with incident and reflected directions.
- Model with combination - known as BRDF
- BRDF: Bidirectional Reflectance Distribution Function

BRDF MEASUREMENTS/PLOTS

DIFFUSE (LAMBERT)

Intuitively: cross-sectional area of the "beam" intersecting an element of surface area is smaller for greater angles with the normal.

COMPUTING DIFFUSE REFLECTION

Depends on angle of incidence: angle between surface normal and incoming light

$$
\mathrm{I}_{\text {diffuse }}=\mathrm{k}_{\mathrm{d}} \mathrm{I}_{\text {light }} \boldsymbol{\operatorname { c o s }} \theta
$$

In practice use vector arithmetic

$$
\mathrm{I}_{\text {diffuse }}=\mathrm{k}_{\mathrm{d}} \mathrm{I}_{\text {light }}(\mathbf{n} \cdot \mathbf{l})
$$

Scalar (B/W intensity) or 3-tuple (color)

- k_{d} : diffuse coefficient, surface color
- $\mathrm{I}_{\text {light }}$: incoming light intensity
- $\mathrm{I}_{\text {diffuse }}$: outgoing light intensity (for diffuse reflection)

NB: Always normalize vectors used in lighting

- n, l should be unit vectors

DIFFUSE LIGHTING EXAMPLES

- Lambertian sphere from several lighting angles:

- need only consider angles from 0° to 90°

PHYSICS OF SPECULAR REFLECTION

- Geometry of specular (perfect mirror) reflection
- Snell's law

PHYSICS OF SPECULAR REFLECTION

- Geometry of specular (perfect mirror) reflection
- Snell's law
- In GLSL: use reflect(-l,n)

EMPIRICAL APPROXIMATION

- Snell's law = perfect mirror-like surfaces
- But ..
- few surfaces exhibit perfect specularity
- Gaze and reflection directions never EXACTLY coincide
- Expect most reflected light to travel in direction predicted by Snell's Law
- But some light may be reflected in a direction slightly off the ideal reflected ray
- As angle from ideal reflected ray increases, we expect less light to be reflected

EMPIRICAL APPROXIMATION

- Angular falloff

- How to model this falloff?

PHONG LIGHTING

Most common lighting model in computer graphics (Phong Bui-Tuong, 1975)

$$
\begin{aligned}
& \mathbf{I}_{\text {specular }}=\mathbf{k}_{\mathbf{s}} \mathbf{I}_{\text {light }}(\cos \phi)^{n_{s}} \\
& \mathbf{I}_{\text {specular }}=\mathbf{k}_{\mathbf{s}} \mathbf{I}_{\text {light }}(\mathbf{v} \bullet \mathbf{r})^{n_{s}}
\end{aligned}
$$

ϕ : angle between r and view direction v
n_{s} : purely empirical constant, varies rate of falloff
k_{s} : specular coefficient, highlight color
no physical basis, "plastic" look

PHONG EXAMPLES

varying light position

varying n_{S}

ALTERNATIVE MODEL

Blinn-Phong model (Jim Blinn, 1977)

- Variation with better physical interpretation
- h: halfway vector; r: roughness

$$
I_{\text {specular }}=k_{s} \cdot(\mathbf{h} \cdot \mathbf{n})^{1 / r} \cdot I_{\text {light }} ; \text { with } \mathbf{h}=(\mathbf{l}+\mathbf{v}) / 2
$$

MATERIALS (LAST BIT)

- Light is linear

- If multiple rays illuminate the surface point the result is just the sum of the individual reflections for each ray

$$
\sum_{p} I_{p}\left(k_{d}\left(n \cdot l_{p}\right)+k_{s}\left(r_{p} \cdot v\right)^{n}\right)
$$

AMBIENT LIGHT

- Non-directional light - environment light
- Object illuminated with same light everywhere
- Looks like silhouette
- Illumination equation

$$
I=I_{a} k_{a}
$$

- I_{a} - ambient light intensity
- k_{a} - fraction of this light reflected from surface

ILLUMINATION EQUATION (PHONG)

- If we take the previous formula and add ambient component:

$$
I_{a} k_{a}+\sum_{p} I_{p}\left(k_{d}\left(n \cdot l_{p}\right)+k_{s}\left(r_{p} \cdot v\right)^{n}\right)
$$

Ambinnt

LIGHT SOURCE TYPES

- Point Light
- light originates at a point

- Directional Light (point light at infinity)
- light rays are parallel
- Rays hit a planar surface at identical angles
- Spot Light
- point light with limited angles
-

LIGHT SOURCE TYPES

- Point Light
- light originates at a point

- defined by location only
- Directional Light (point light at infinity)
- light rays are parallel
- Rays hit a planar surface at identical angles

- defined by direction only
- Spot Light
- point light with limited angles
- defined by location, direction, and angle range

WHICH LIGHTS/MATERIALS ARE USED HERE?

LIGHT SOURCE FALLOFF

- Quadratic falloff (point- and spot lights)
- Brightness of objects depends on power per unit area that hits the object
- The power per unit area for a point or spot light decreases quadratically with distance

ILLUMINATION EQUATION WITH ATTENUATION

- For multiple light sources:

$$
I=I_{a} k_{a}+\sum_{p} \frac{I_{p}}{A\left(d_{p}\right)}\left(k_{d}\left(n \cdot l_{p}\right)+k_{s}\left(r_{p} \cdot v\right)^{n}\right)
$$

- $d_{\bar{p}}$ distance between surface and light source + distance between surface and viewer, A - attenuation function

LIGHT

- Light has color
- Interacts with object color (r,g,b)

$$
\begin{aligned}
& I=I_{a} k_{a} \\
& I_{a}=\left(I_{a r}, I_{a g}, I_{a b}\right) \\
& k_{a}=\left(k_{a r}, k_{a g}, k_{a b}\right) \\
& I=\left(I_{r}, I_{g}, I_{b}\right)=\left(I_{a r} k_{a r}, I_{a g} k_{a g}, I_{a b} k_{a b}\right)
\end{aligned}
$$

- Blue light on white surface?
- Blue light on red surface?

LIGHT AND MATERIAL SPECIFICATION

- Light source: amount of RGB light emitted
- value = intensity per channel
e.g., (1.0,0.5,0.5)
- every light source emits ambient, diffuse, and specular light
- Materials: amount of RGB light reflected
- value represents percentage reflected
e.g., (0.0,1.0,0.5)
- Interaction: multiply components
- Red light $(1,0,0) \mathrm{x}$ green surface $(0,1,0)=\operatorname{black}(0,0,0)$

NOTES ON SHADING

- To do all the calculations, we need to choose a coordinate system
- Typically View Coordinate System
- We need to have
- Vertex Coordinates
- Normals
- Light Positions/Directions

WHEN TO APPLY LIGHTING MODEL? OR WHERE DO NORMAL COME FROM?

per polygon
"flat shading"

per vertex
"Gouraud
shading"
per pixel
"per pixel lighting"
"Phong shading"

WHEN TO APPLY LIGHTING MODEL?
 OR WHERE DO NORMAL COME FROM?

$\left.\begin{array}{ccc}\text { "flat" }= \\ \text { constant face } \\ \text { normal }\end{array} \quad \begin{array}{c}\text { "Gouraud" }=\text { use } \\ \text { vertex normal, } \\ \text { interpolate } \\ \text { vertex color } \\ \text { inside }\end{array} \quad \begin{array}{c}\text { interpolate normal, } \\ \text { compute equation } \\ \text { per pixel }\end{array}\right]$

AMBIENT LIGHTING

PER-POLYGON SHADING

PER VERTEX SHADING

PER PIXEL SHADING

CURVED SURFACES WITH PER-PIXEL SHADING

COMPLEX LIGHTING AND SHADING

TEXTURE MAPPING

DISPLACEMENT MAPPING

REFLECTION MAPPING

GLOBAL ILLUMINATION

SUBSURFACE SCATTERING

TRANSFORMING NORMALS

COMPUTING NORMALS

- polygon:

- assume vertices ordered CCW when viewed from visible side of polygon

TRANSFORMING NORMALS

Line + Normal

Transform both by same matrix

Transformed line and correct normal

TRANSFORMING NORMALS

- When transforming triangle(s) can we use the same transformation to transform the normal \& avoid recomputation?
- What is a normal?
- Vector
- Orthogonal (perpendicular) to plane/surface
- Do standard transformations preserve orthogonality?
- Or angles in general?

FIRST THINGS FIRST

- Dot product notation: $a \cdot b$
- Matrix notation: $a^{T} b$
- Both \boldsymbol{a} and \boldsymbol{b} are columns

PLANES AND NORMALS

Let's take a plane $A x+B y+C z+D=0$
And two points on the plane: P_{1}, P_{2}

$$
(A, B, C, *) \cdot\left(P_{1}-P_{2}\right)=0
$$

$\boldsymbol{n} \cdot\left(P_{1}-P_{2}\right)=0$

PLANES AND NORMALS

Let's take a plane $A x+B y+C z+D=0$
And two points on the plane: P_{1}, P_{2}
$(A, B, C, *) \cdot\left(P_{1}-P_{2}\right)=0$

$$
\boldsymbol{n} \cdot\left(P_{1}-P_{2}\right)=0
$$

or, exactly the same:

$$
n^{T} M^{-1} M\left(P_{1}-P_{2}\right)=0
$$

PLANES AND NORMALS

Let's take a plane $A x+B y+C z+D=0$
And two points on the plane: P_{1}, P_{2}

$$
\begin{gathered}
(A, B, C, *) \cdot\left(P_{1}-P_{2}\right)=0 \\
\boldsymbol{n} \cdot\left(P_{1}-P_{2}\right)=0
\end{gathered}
$$

or, exactly the same:

$$
n^{T} M^{-1} M\left(P_{1}-P_{2}\right)=0
$$

After transformation M:

$$
\left(\boldsymbol{n}^{\prime}\right)^{T}\left(M P_{1}-M P_{2}\right)=0
$$

PLANES AND NORMALS

Let's take a plane $A x+B y+C z+D=0$
And two points on the plane: P_{1}, P_{2}
$(A, B, C, *) \cdot\left(P_{1}-P_{2}\right)=0$

$$
\boldsymbol{n} \cdot\left(P_{1}-P_{2}\right)=0
$$

or, exactly the same:

$$
n^{T} M^{-1} M\left(P_{1}-P_{2}\right)=0
$$

After transformation M:

$$
\left(n^{\prime}\right)^{T}\left(M P_{1}-M P_{2}\right)=0
$$

So,

$$
\begin{gathered}
n^{T} M^{-1}=\left(\boldsymbol{n}^{\prime}\right)^{T} \\
n^{\prime}=\left(M^{-1}\right)^{T} n
\end{gathered}
$$

TRANSFORMING NORMALS

$$
n^{\prime}=\left(M^{-1}\right)^{T} n
$$

Normals are
transformed by
Transpose of Inverse

IN THREE.JS

- In vertex shader:

```
pointInVCS = modelViewMatrix * vec4(position, 1.0);
normalInVCS = normalMatrix * normal;
transpose of inverse of modelViewMatrix
```


SOME HINTS ON THEORY A3

SHAPES - CURVES/SURFACES

- Mathematical representations:
- Explicit functions
- Parametric functions
- Implicit functions

SHAPES: EXPLICIT FUNCTIONS

- Curves:

$$
y:=\sin (x)
$$

- y is a function of x :
- Only works in 2D
- Surfaces:
- z is a function of x and y :

$$
z:=\sin (x)+\cos (y)
$$

- Cannot define arbitrary shapes in 3D

SHAPES: PARAMETRIC FUNCTIONS

- Curves:
-2D: x and y are functions of a parameter value t
- 3D: x, y, and z are functions of a parameter value t

$$
C(t):=\left(\begin{array}{c}
\cos (t) \\
\sin (t) \\
t
\end{array}\right)
$$

SHAPES: PARAMETRIC FUNCTIONS

- Surfaces:
- Surface S is defined as a function of parameter values s, t
- Names of parameters can be different to match intuition:

$$
S(\phi, \theta):=\left(\begin{array}{c}
\cos (\phi) \cos (\theta) \\
\sin (\phi) \cos (\theta) \\
\sin (\theta)
\end{array}\right)
$$

SHAPES: IMPLICIT

- Surface (3D) or Curve (2D) defined by zero set (roots) of function
- E.g:

$$
S(x, y, z): x^{2}+y^{2}+z^{2}-1=0
$$

HOW TO INTERSECT?

- Two lines in 2D?
- A line and a plane?
- A line and a sphere?
- (Whiteboard)

[^0]: Per-Sample Operations

 | Depth test |
 | :---: |
 | Blending |

