THE RENDERING PIPELINE

Vertices and attributes

- Vertex Shader
 - Modelview transform
 - Per-vertex attributes

- Rasterization
 - Scan conversion
 - Interpolation

- Per-Sample Operations
 - Depth test
 - Blending

Vertex Post-Processing
- Viewport transform
- Clipping

Fragment Shader
- Texturing/...
- Lighting/shading

Framebuffer
LIGHTING/SHADING

• Goal
 • Model the interaction of light with surfaces to render realistic images
 • Generate per (pixel/vertex) color

FACTORS

• Light sources
 • Location, type & color

• Surface materials
 • How surfaces reflect light

• Transport of light
 • How light moves in a scene

• Viewer position
FACTORS

- Light sources
 - Location, type & color
- Surface materials
 - How surfaces reflect light
- Transport of light
 - How light moves in a scene
- Viewer position

- How can we do this in the pipeline?

ILLUMINATION MODELS/ALGORITHMS

Local illumination – Fast
Ignore real physics, approximate the look
Interaction of each object with light
 - Compute on surface (light to viewer)

Global illumination – Slow
(More) Physically based
Interactions between objects
THE BIG PICTURE (BASIC)

• Light: energy in a range of wavelengths
 • White light – all wavelengths
 • Colored (e.g. red) – subset of wavelengths
• Surface “color” – reflected wavelength
 • White – reflects all lengths
 • Black – absorbs everything
 • Colored (e.g. red) absorbs all but the reflected color
• Multiple light sources add (energy sums)

MATERIALS

• Surface reflectance:
 • Illuminate surface point with a ray of light from different directions
 • How much light is reflected in each direction?
BASIC TYPES

- Most surfaces exhibit complex reflectances
- Vary with incident and reflected directions.
- Model with combination – known as BRDF
 - BRDF: Bidirectional Reflectance Distribution Function

REFLECTANCE DISTRIBUTION MODEL

- Most surfaces exhibit complex reflectances
 - Vary with incident and reflected directions.
 - Model with combination – known as BRDF
 - BRDF: Bidirectional Reflectance Distribution Function
BRDF MEASUREMENTS/PLOTS

2D slice

Intuitively: cross-sectional area of the “beam” intersecting an element of surface area is smaller for greater angles with the normal.

DIFFUSE (LAMBERT)

Lambert's Cosine Law

Intuitively: cross-sectional area of the “beam” intersecting an element of surface area is smaller for greater angles with the normal.
Computing Diffuse Reflection

Depends on **angle of incidence**: angle between surface normal and incoming light

\[I_{\text{diffuse}} = k_d \ I_{\text{light}} \cos \theta \]

In practice use vector arithmetic

\[I_{\text{diffuse}} = k_d \ I_{\text{light}} (n \cdot l) \]

Scalar (B/W intensity) or 3-tuple (color)
- \(k_d \): diffuse coefficient, surface color
- \(I_{\text{light}} \): incoming light intensity
- \(I_{\text{diffuse}} \): outgoing light intensity (for diffuse reflection)

NB: Always normalize vectors used in lighting
- \(n, \ l \) should be unit vectors

Diffuse Lighting Examples

- Lambertian sphere from several lighting angles:
 ![Diffuse Lighting Examples](image)

- Need only consider angles from 0° to 90°
PHYSICS OF SPECULAR REFLECTION

- Geometry of specular (perfect mirror) reflection
- Snell's law

\[\mathbf{r} = -\mathbf{l} + 2(\mathbf{n} \cdot \mathbf{l})\mathbf{n} \]

PHYSICS OF SPECULAR REFLECTION

- Geometry of specular (perfect mirror) reflection
- Snell's law
- In GLSL: use \textit{reflect(-l,n)}
EMPIRICAL APPROXIMATION

• Snell's law = perfect mirror-like surfaces
 • But ..
 • few surfaces exhibit perfect specularity
 • Gaze and reflection directions never EXACTLY coincide

• Expect **most** reflected light to travel in direction predicted by Snell's Law

• But some light may be reflected in a direction slightly off the ideal reflected ray

• As angle from ideal reflected ray increases, we expect less light to be reflected

EMPIRICAL APPROXIMATION

• Angular falloff

 \[
 \overline{r} \quad \overline{n} \quad \overline{l}
 \]

 \[\theta_1\]

• How to model this falloff?
PHONG LIGHTING

Most common lighting model in computer graphics (Phong Bui-Tuong, 1975)

\[I_{\text{specular}} = k_s I_{\text{light}} (\cos \phi)^n_s \]

\[I_{\text{specular}} = k_s I_{\text{light}} (\mathbf{v} \cdot \mathbf{r})^{n_s} \]

\(\phi \): angle between \(\mathbf{r} \) and view direction \(\mathbf{v} \)

\(n_s \): purely empirical constant, varies rate of falloff

\(k_s \): specular coefficient, highlight color

no physical basis, “plastic” look

PHONG EXAMPLES

- varying light position
- varying \(n_s \)
ALTERNATIVE MODEL

Blinn–Phong model (Jim Blinn, 1977)

• Variation with better physical interpretation
 • h: halfway vector; r: roughness

\[
I_{specular} = k_s \cdot (h \cdot n)^{1/r} \cdot I_{light} \text{; with } h = (l + v) / 2
\]

MATERIALS (LAST BIT)

• Light is **linear**
 • If multiple rays illuminate the surface point the result is just the sum of the individual reflections for each ray

\[
\sum_p I_p (k_d (n \cdot l_p) + k_s (r_p \cdot v)^n)
\]
AMBIENT LIGHT

• Non-directional light – environment light
• Object illuminated with same light everywhere
 • Looks like silhouette
• Illumination equation \(I = I_a k_a \)
 • \(I_a \) – ambient light intensity
 • \(k_a \) – fraction of this light reflected from surface

ILLUMINATION EQUATION (PHONG)

• If we take the previous formula and add ambient component:

\[
I_a k_a + \sum_p I_p (k_d (n \cdot l_p) + k_s (r_p \cdot v)^n)
\]
LIGHT SOURCE TYPES

• Point Light
 • light originates at a point
 • defined by location only

• Directional Light (point light at infinity)
 • light rays are parallel
 • Rays hit a planar surface at identical angles
 • defined by direction only

• Spot Light
 • point light with limited angles
 • defined by location, direction, and angle range
WHICH LIGHTS/MATERIALS ARE USED HERE?

• Quadratic falloff (point- and spot lights)
• Brightness of objects depends on power per unit area that hits the object
• The power per unit area for a point or spot light decreases quadratically with distance

LIGHT SOURCE FALLOFF

Area $4\pi r^2$

Area $4\pi (2r)^2$
ILLUMINATION EQUATION WITH ATTENUATION

- For multiple light sources:

\[
I = I_d k_a + \sum_p \frac{I_p}{A(d_p)} (k_d (n \cdot l_p) + k_s (r_p \cdot v)^n)
\]

- \(d_p\) distance between surface and light source + distance between surface and viewer, \(A\) – attenuation function

LIGHT

- Light has color
- Interacts with object color \((r,g,b)\)

\[
I = I_a k_a
\]

\[
I_a = (I_{ar}, I_{ag}, I_{ab})
\]

\[
k_a = (k_{ar}, k_{ag}, k_{ab})
\]

\[
I = (I_r, I_g, I_b) = (I_{ar} k_{ar}, I_{ag} k_{ag}, I_{ab} k_{ab})
\]

- Blue light on white surface?
- Blue light on red surface?
LIGHT AND MATERIAL SPECIFICATION

• Light source: amount of RGB light emitted
 • value = intensity per channel
 e.g., (1.0,0.5,0.5)
 • every light source emits ambient, diffuse, and specular light
• Materials: amount of RGB light reflected
 • value represents percentage reflected
 e.g., (0.0,1.0,0.5)
• Interaction: multiply components
 • Red light (1,0,0) x green surface (0,1,0) = black (0,0,0)

NOTES ON SHADING

• To do all the calculations, we need to choose a coordinate system
• Typically View Coordinate System
• We need to have
 • Vertex Coordinates
 • Normals
 • Light Positions/Directions
WHEN TO APPLY LIGHTING MODEL? OR WHERE DO NORMAL COME FROM?

- **per polygon**
 - "flat shading"

- **per vertex**
 - "Gouraud shading"

- **per pixel**
 - "per pixel lighting"
 - "Phong shading"

"flat" = constant face normal

"Gouraud" = use vertex normal, interpolate vertex color inside

"per pixel/Phong" = interpolate normal, compute equation per pixel
AMBIENT LIGHTING

PER-POLYGON SHADING
PER VERTEX SHADING

PER PIXEL SHADING
CURVED SURFACES WITH PER-PIXEL SHADING

COMPLEX LIGHTING AND SHADING
TEXTURE MAPPING

DISPLACEMENT MAPPING
REFLECTION MAPPING

GLOBAL ILLUMINATION
SUBSURFACE SCATTERING

TRANSFORMING NORMALS
COMPUTING NORMALS

- polygon:

\[N = \frac{(P_2 - P_1) \times (P_3 - P_1)}{\| (P_2 - P_1) \times (P_3 - P_1) \|} \]

- assume vertices ordered CCW when viewed from visible side of polygon

TRANSFORMING NORMALS

Line + Normal

Transform both by same matrix

Transformed line and correct normal
TRANSFORMING NORMALS

• When transforming triangle(s) can we use the same transformation to transform the normal & avoid recomputation?

• What is a normal?
 • **Vector**
 • Orthogonal (perpendicular) to plane/surface

• Do standard transformations preserve orthogonality?
 • Or angles in general?

FIRST THINGS FIRST

• Dot product notation: $a \cdot b$

• Matrix notation: $a^T b$
 • Both a and b are columns
PLANES AND NORMALS

Let's take a plane $Ax + By + Cz + D = 0$
And two points on the plane: P_1, P_2
$(A, B, C, *) \cdot (P_1 - P_2) = 0$
$n \cdot (P_1 - P_2) = 0$

or, exactly the same:
$n^T M^{-1} M (P_1 - P_2) = 0$
PLANE AND NORMALS

Let's take a plane $Ax + By + Cz + D = 0$
And two points on the plane: P_1, P_2

$\begin{align*}
(A, B, C, *) \cdot (P_1 - P_2) &= 0 \\
n \cdot (P_1 - P_2) &= 0
\end{align*}$

or, exactly the same:

$n^T M^{-1} M (P_1 - P_2) = 0$

After transformation M:

$(n')^T (MP_1 - MP_2) = 0$

So,

$n^T M^{-1} = (n')^T$

$n' = (M^{-1})^T n$
TRANSFORMING NORMALS

\[n' = (M^{-1})^T n \]

Normals are transformed by \textbf{Transpose of Inverse}

IN THREE.JS

• In vertex shader:

```javascript
pointInVCS = modelViewMatrix \times \text{vec4}(\text{position}, 1.0);
normalInVCS = \text{normalMatrix} \times \text{normal};
```

transpose of inverse of modelViewMatrix
SOME HINTS ON THEORY A3

SHAPES - CURVES/SURFACES

• Mathematical representations:
 • Explicit functions
 • Parametric functions
 • Implicit functions
SHAPES: EXPLICIT FUNCTIONS

- **Curves:**
 - $y := \sin(x)$
 - y is a function of x:
 - Only works in 2D

- **Surfaces:**
 - $z := \sin(x) + \cos(y)$
 - z is a function of x and y:
 - Cannot define arbitrary shapes in 3D

SHAPES: PARAMETRIC FUNCTIONS

- **Curves:**
 - 2D: x and y are functions of a parameter value t
 - 3D: x, y, and z are functions of a parameter value t

\[
C(t) := \begin{pmatrix} \cos(t) \\ \sin(t) \\ t \end{pmatrix}
\]
SHAPES: PARAMETRIC FUNCTIONS

• Surfaces:
 • Surface S is defined as a function of parameter values s, t
 • Names of parameters can be different to match intuition:

\[
S(\phi, \theta) := \begin{pmatrix}
\cos(\phi) \cos(\theta) \\
\sin(\phi) \cos(\theta) \\
\sin(\theta)
\end{pmatrix}
\]

SHAPES: IMPLICIT

• Surface (3D) or Curve (2D) defined by zero set (roots) of function
 • E.g:

\[
S(x, y, z) : x^2 + y^2 + z^2 - 1 = 0
\]
HOW TO INTERSECT?

- Two lines in 2D?
- A line and a plane?
- A line and a sphere?
- (Whiteboard)