CPSC 314
Assignment 3: Shading, Lighting and Textures

Due 11:59pm, Nov 14th, 2016

1 Introduction

The goal of this assignment is to explore lighting and shading of 3D models. You will be
simulating three different styles of shading : Gouraud, Phong , Blinn-Phong; and texturing.
In this assignment you will be adding new pairs of shaders (both vertex and fragment shaders)
to carry out these tasks. You will be writing a bit more code, but the shaders will be very
similar to previous assignments. You will also experiment with material and light parameter
modifications.

2 Template

The template code is found in the main assignment directory. It is very similar to the previous
template for assignment 1. You will need to edit the code and create some new shaders for this
assignment. We provide you with default geometry for all the objects you will need to shade,
and have already defined the properties of a basic directional light in the scene (defined in
the lightColor, lightDirection and ambientColor variables). We have also defined suggested
material properties for the objects you will be shading (defined in kSpecular, kDiffuse and
kAmbient). You will be responsible for updating the various shaders to implement the
desired lighting schemes and for changing these light and material properties.

3 Important Rules

The lighting models you will be implementing in this assignment are very common in graph-
ics applications. Thus three.js has already implemented them in a number of the default
materials provided with three.js. These can be used to test if you are getting reasonable
results, but you must implement these shading models yourself in your own custom shaders.
We have created template shaders similar to previous assignments for you to work in. For
the texturing question we have used the three.js function THREE.ImageUtils.load Texture to
load the texture but you must pass it to the shaders and look up the texture color yourself.



CPSC 314 Assignment 3 Due 11:59pm, Nov 14th, 2016

4 Work to be done (100 pts)

(15 pts) Gouraud Shading In this part you will start with a simple and fast lighting
model. Gouraud shading calculates the lighting of an object at each vertex (e.g. in the
vertex shader). The standard graphics pipeline will then interpolate the color of the
object between the vertices to get the individual fragment colors. An example of the
result (taken from wikipedia) is shown below, note how models tend to look blocky or
pixelated if they do not have a high polygon count. The calculation for the lighting
at a vertex should be based on the standard Phong reflection model discussed in class.
You can play around with the various components (diffuse, specular and ambient) to
produce different effects and materials.

Figure 1: Gouraud shaded torus with phong reflection model.

(15 pts) Phong Reflection and Phong Shading. In the previous section a simplified
lighting model was used to calculate the color of the object at any given vertex. This
is fast and efficient but doesn’t look very appealing or smooth. In this section you
should implement the full Phong reflection model by passing the lighting parameters
(such as the triangle normal and vertex position) as varying variables to the fragment
shader. Then, you should calculate the lighting of the mesh at each fragment using the
interpolated lighting parameters. This allows the shading model to better approximate
curved surfaces and produces a very smooth shading model. The following image, taken
from the Wikipedia article on the Phong reflection model, shows how the different
components look individually and summed together:

Ambient + Diffuse + Specular = Phong Reflection

Figure 2: Phong Reflection Model

The main calculations should all be done in the fragment shader (in phong.fs.glsl).
Note that you will still need a vertex shader (in phong.vs.glsl), to pass the appropriate
information to your fragment shader.

(10 pts) Blinn-Phong Shading Instead of computing the dot product between the re-
flected light vector and viewer, a dot product between the halfway vector between

Page 2 of 4



CPSC 314 Assignment 3 Due 11:59pm, Nov 14th, 2016

light and viewing direction, and the surface normal can be used. This is the essence of
the Blinn-Phong shading model. Implement a shader which simulates the Blinn-Phong
shading model. The textbook or lecture slides has more detail on this subject.

(15 pts) Basic Texturing A modeled object often has many very small details and facets
of the surface (e.g. the grain of wood on a box, scratches on metal, freckles on skin).
These are very difficult if not impossible to model as a single material lit by a Phong like
model. In order to efficiently simulate these materials we usually resort to texturing.
In basic texturing, UV coordinates are taken from the vertex buffer (three.js provides
them for free on default objects such as the sphere in our assignment). UV coordinates
are a 2D index into an image file whose RGB values can be used to help color the
mesh.

While you can mix Phong and texturing in practice, for this task we will ask you to use
the texture data as the final color of the fragment. You can generate a mixed shading
model as part of the free-form part of the assignment. We provide you with a standard
texture file called “lava-texture.jpg” that you must apply to the fourth sphere using
a custom shader. It is loaded into the variable “sphereTexture” in ad.js This should
be done in the fragment shader. You are encouraged but not required to account for
perspective distortion in the texture. If you do, point it out to the TA during marking.

Figure 3: Example results for goraud, phong, blinn-phong and texturing, shown from left to
right.

(15 pts) Basic Light and Material Changes Add a basic keyboard based interface to
your program (similar to assignment 1). Each time the ‘I’ key is pressed randomly
change the color of the light used in the scene (think how to make sure that light

Page 3 of 4



CPSC 314 Assignment 3 Due 11:59pm, Nov 14th, 2016

intensity remains the same). Fach time the ‘m’ key is pressed randomly change the
base color of the three untextured spheres (ambient and diffuse), keep the specular
highlights as white (think how to keep the base color intensity constant). Make sure
the rest of the shading effects remain correct.

(25 pts) Creative License. This part is up to you. You should create a new shader or
modify one of the above shaders to add support for additional interesting lighting,
shading or texturing effects similar to the complexity of the ones above. Use the
keyboard interface to switch between the different effects (both the mandatory ones
above and the new creative ones). Some sugestions are:

e Implement anisotropic material, such as brushed metal.
e Add and animate additional spot lights and directional lights.
Simulate fog (think how).

e Implement normal mapping.
e Implement a cube map to create a reflective object.

e Combine texture with shading on both the fourth sphere and the floor.

Bonus marks may be given at the discretion of the marker for particularly noteworthy ex-
plorations.

Hand-in Instructions: You do not have to hand in any printed code. Create a
README.txt file that includes your name, student number, and login ID, and any in-
formation you would like to pass on to the marker. Create a folder called “a3” under your
“cs314” directory. Put all the source files, your makefile, and your README.txt file for each
part in the folder. Do not use further sub-directories. The assignment should be handed in
with the exact command:

handin cs314 a3

Page 4 of 4



