1. Transformations as a change of coordinate frame

NOTE: We will consider all coordinates as tuples of (i, j)
(a) (1 point) Express the coordinates of point P with respect to coordinate frames A , B , and C .

$$
P=\binom{4}{3}_{A}=\binom{1 / 3}{5 / 3}_{B}=\binom{3 / 2}{-1 / 4}_{C}
$$

Consider finding the clean unit vectors i_{A} and j_{A} from every coordinate frame. If we had this, we can easily get to our point P from any origin:

$$
\begin{align*}
P & =O_{A}+4 \mathbf{i}_{A}+3 \mathbf{j}_{A} \tag{1}\\
& =O_{B}+2 \mathbf{i}_{A}+(-3) \mathbf{j}_{A} \tag{2}\\
& =O_{C}+2 \mathbf{i}_{A}+1 \mathbf{j}_{A} \tag{3}
\end{align*}
$$

Now look at frame B. We can get a horizontal vector with $2 \mathbf{i}_{B}+1 \mathbf{j}_{B}=\binom{2}{1}_{B}$. We can turn this into our unit vector i_{A} by scaling by 1/3:

$$
i_{A}=\frac{1}{3}\binom{2}{1}_{B}=\binom{2 / 3}{1 / 3}_{B}
$$

Similarly, we can get our vertical unit vector j_{A} :

$$
j_{A}=\frac{1}{3}\binom{1}{-1}_{B}=\binom{1 / 3}{-1 / 3}_{B}
$$

Now we can substitute this into (2), giving us:

$$
\begin{aligned}
P & =O_{B}+2\binom{2 / 3}{1 / 3}_{B}+(-3)\binom{1 / 3}{-1 / 3}_{B} \\
& =O_{B}+(1 / 3) \mathbf{i}_{B}+(5 / 3) \mathbf{j}_{B} \\
& =\binom{1 / 3}{5 / 3}_{B}
\end{aligned}
$$

We do the same for frame C:

$$
\begin{gathered}
i_{A}=\frac{1}{4}\binom{2}{-1}_{C}=\binom{2 / 4}{-1 / 4}_{C} \\
j_{A}=\frac{1}{4}\binom{2}{1}_{C}=\binom{2 / 4}{1 / 4}_{C}
\end{gathered}
$$

Substituting into (3):

$$
\begin{aligned}
P & =O_{C}+2\binom{2 / 4}{-1 / 4}_{C}+1\binom{2 / 4}{1 / 4}_{C} \\
& =O_{C}+(6 / 4) \mathbf{i}_{C}+(-1 / 4) \mathbf{j}_{C} \\
& =\binom{3 / 2}{-1 / 4}_{C}
\end{aligned}
$$

(b) (1 point) Express the coordinates of vector V with respect to coordinate frames A , B , and C.

$$
\mathbf{V}_{A}=(-1) \mathbf{i}_{A}+(-2) \mathbf{j}_{A}=\binom{-1}{-2}_{A}
$$

We've done most of the work already in part (a).

$$
\begin{aligned}
\mathbf{V}_{B} & =(-1) \mathbf{i}_{A}+(-2) \mathbf{j}_{A} \\
& =(-1)\binom{2 / 3}{1 / 3}_{B}+(-2)\binom{1 / 3}{-1 / 3}_{B} \\
& =\binom{-4 / 3}{1 / 3}_{B} \\
\mathbf{V}_{C} & =(-1) \mathbf{i}_{A}+(-2) \mathbf{j}_{A} \\
& =(-1)\binom{2 / 4}{-1 / 4}_{C}+(-2)\binom{2 / 4}{1 / 4}_{C} \\
& =\binom{-3 / 2}{-1 / 4}_{C}
\end{aligned}
$$

Presented here is the alternate "parallel" method for finding \mathbf{V}_{B} : This time, we want to find the intercept of \mathbf{j} and ℓ. Define

$$
\begin{aligned}
& \ell:=\alpha\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\left[\begin{array}{c}
0 \\
-1
\end{array}\right] \\
& \mathbf{j}:=\beta\left[\begin{array}{c}
1 \\
-2
\end{array}\right], \quad \text { we can see graphically that } \beta>0 .
\end{aligned}
$$

Then we solve,

$$
\begin{aligned}
\alpha\left[\begin{array}{c}
-1 \\
1
\end{array}\right]+\left[\begin{array}{c}
0 \\
-1
\end{array}\right] & =\beta\left[\begin{array}{c}
1 \\
-2
\end{array}\right] \\
\alpha\left[\begin{array}{l}
1 \\
1
\end{array}\right]-\beta\left[\begin{array}{c}
1 \\
-2
\end{array}\right] & =\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
\Longrightarrow\left\{\begin{array}{c}
\alpha=\beta \\
\alpha+2 \beta=1 \\
\Longrightarrow 3 \beta
\end{array}\right. & =1 \\
\Longrightarrow \beta & =\frac{1}{3}
\end{aligned}
$$

We find the length from $(-1,-2)$ to the intersection to determine the \mathbf{i} component

$$
\begin{aligned}
\left\|\frac{1}{3}\binom{1}{-2}-\binom{-1}{-2}\right\|_{2} & =\left\|\binom{1 / 3}{-2 / 3}+\binom{1}{2}\right\|_{2} \\
& =\left\|\binom{4 / 3}{4 / 3}\right\|_{2} \\
& =\sqrt{\left(\frac{4}{3}\right)^{2}+\left(\frac{4}{3}\right)^{2}}=\sqrt{\frac{32}{9}}=\frac{4 \sqrt{2}}{3}
\end{aligned}
$$

Since we know $\|\mathbf{i}\|=\sqrt{1^{2}+1^{2}}=\sqrt{2}$, we divide this distance by \mathbf{i} 's length to find the contribution of \mathbf{i}

$$
\frac{4 \sqrt{2}}{3} \cdot \frac{1}{\sqrt{2}}=\frac{4}{3}
$$

Thus, we get $\mathbf{V}_{B}=\left(-\frac{4}{3}, \frac{1}{3}\right)$
(c) (2 points) Fill in the 2D transformation matrix that takes points from F_{C} to F_{A}, as given to the right of the above figure.
To form the matrix that converts points in F_{C} to F_{A}, we express the basis vectors \mathbf{i} and \mathbf{j} of F_{C} and the translation of F_{C} 's origin in terms of F_{A} coordinates.

$$
\begin{gathered}
\mathbf{i}_{C}=1 \mathbf{i}_{A}+1 \mathbf{j}_{A} \\
\mathbf{j}_{C}=-2 \mathbf{i}_{A}+2 \mathbf{j}_{A} \\
O_{C}=O_{A}+2 \mathbf{i}_{A}+2 \mathbf{j}_{A} \\
{\left[\begin{array}{ccc}
i_{1} & j_{1} & t_{1} \\
i_{2} & j_{2} & t_{2} \\
0 & 0 & 1
\end{array}\right]_{C \rightarrow A}=\left[\begin{array}{ccc}
1 & -2 & 2 \\
1 & 2 & 2 \\
0 & 0 & 1
\end{array}\right]}
\end{gathered}
$$

To verify, we use the point we computed from part (a),

$$
\left[\begin{array}{ccc}
1 & -2 & 2 \\
1 & 2 & 2 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
3 / 2 \\
-1 / 4 \\
1
\end{array}\right]_{C}=\left[\begin{array}{c}
3 / 2+2 / 4+2 \\
3 / 2-2 / 4+2 \\
1
\end{array}\right]=\left[\begin{array}{c}
4 / 2+2 \\
2 / 2+2 \\
1
\end{array}\right]=\left[\begin{array}{l}
4 \\
3 \\
1
\end{array}\right]_{A}
$$

(d) (2 points) Fill in the 2 D transformation matrix that takes points from F_{A} to F_{B}, as given to the right of the above figure.
One way to do this is to find the inverse matrix that converts points from F_{B} to F_{A} (which is nice), and then invert it (which is not so nice).

However, we already did all the work in part (a) that expresses F_{A} 's basis in terms of F_{B}, so let's just express F_{A} 's origin in terms of F_{B} to directly obtain our matrix. From part (a):

$$
\begin{aligned}
i_{A} & =\binom{2 / 3}{1 / 3}_{B} \\
j_{A} & =\binom{1 / 3}{-1 / 3}_{B}
\end{aligned}
$$

To find O_{A} in terms of F_{B}, we use the same method as part (a):

$$
\begin{aligned}
& O_{A}=O_{B}+(-2) \mathbf{i}_{A}+(-6) \mathbf{j}_{A} \\
&=O_{B}+(-2)\binom{2 / 3}{1 / 3}_{B}+(-6)\binom{1 / 3}{-1 / 3}_{B} \\
&=O_{B}+(-10 / 3) \mathbf{i}_{B}+(4 / 3) \mathbf{j}_{B} \\
&=\binom{-10 / 3}{4 / 3}_{B} \\
& {\left[\begin{array}{ccc}
i_{1} & j_{1} & t_{1} \\
i_{2} & j_{2} & t_{2} \\
0 & 0 & 1
\end{array}\right]_{A \rightarrow B}=\left[\begin{array}{ccc}
2 / 3 & 1 / 3 & -10 / 3 \\
1 / 3 & -1 / 3 & 4 / 3 \\
0 & 0 & 1
\end{array}\right] }
\end{aligned}
$$

To verify, we use the point we computed from part (a),

$$
\left[\begin{array}{ccc}
2 / 3 & 1 / 3 & -10 / 3 \\
1 / 3 & -1 / 3 & 4 / 3 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
4 \\
3 \\
1
\end{array}\right]_{A}=\left[\begin{array}{c}
8 / 3+3 / 3-10 / 3 \\
4 / 3-3 / 3+4 / 3 \\
1
\end{array}\right]=\left[\begin{array}{c}
1 / 3 \\
5 / 3 \\
1
\end{array}\right]_{B}
$$

Presented below is the alternative method, where we find the matrix converting points from F_{B} to F_{A} and invert it.

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
i_{1} & j_{1} & t_{1} \\
i_{2} & j_{2} & t_{2} \\
0 & 0 & 1
\end{array}\right]_{B \rightarrow A}=\left[\begin{array}{ccc}
1 & 1 & 2 \\
1 & -2 & 6 \\
0 & 0 & 1
\end{array}\right] } \\
& {\left[\begin{array}{ccc|ccc}
1 & 1 & 2 & 1 & 0 & 0 \\
1 & -2 & 6 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] } \rightarrow\left[\begin{array}{ccc|ccc}
1 & 1 & 0 & 1 & 0 & -2 \\
1 & -2 & 0 & 0 & 1 & -6 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \\
& \rightarrow\left[\begin{array}{ccc|ccc}
3 & 0 & 0 & 2 & 1 & -10 \\
1 & -2 & 0 & 0 & 1 & -6 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \\
& \rightarrow\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & 2 / 3 & 1 / 3 & -10 / 3 \\
-1 & 2 & 0 & 0 & -1 & 6 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \\
& \rightarrow\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & 2 / 3 & 1 / 3 & -10 / 3 \\
0 & 2 & 0 & 2 / 3 & -2 / 3 & 8 / 3 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \\
& \rightarrow\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & 2 / 3 & 1 / 3 & -10 / 3 \\
0 & 1 & 0 & 1 / 3 & -1 / 3 & 4 / 3 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

The right side matrix is exactly the one we found with the direct method:

$$
\left[\begin{array}{ccc}
2 / 3 & 1 / 3 & -10 / 3 \\
1 / 3 & -1 / 3 & 4 / 3 \\
0 & 0 & 1
\end{array}\right]_{A \rightarrow B}
$$

(e) (2 points) Using the above two matrices, develop a 2D transformation matrix that takes points from F_{C} to F_{B}. Test your solution using point P.
Given the matrices from parts (c) and (d), we have $M_{C \rightarrow A}$, the matrix that converts points from F_{C} to F_{A}, and $M_{A \rightarrow B}$, the matrix that converts points from F_{A} to F_{B}. We notice that since $M_{C \rightarrow A} P_{C}$ gives a point in F_{A} from a point in F_{C}, we can use that point to compute the same point in F_{B}.

$$
\begin{aligned}
P_{A} & =M_{C \rightarrow A} P_{C} \\
P_{B} & =M_{A \rightarrow B} P_{A} \\
& =M_{A \rightarrow B}\left[M_{C \rightarrow A} P_{C}\right] \\
\Longrightarrow P_{B} & =M_{C \rightarrow B} P_{C} \\
\Longrightarrow M_{C \rightarrow B} & =M_{A \rightarrow B} M_{C \rightarrow A} \\
& =\left[\begin{array}{ccc}
2 / 3 & 1 / 3 & -10 / 3 \\
1 / 3 & -1 / 3 & 4 / 3 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & -2 & 2 \\
1 & 2 & 2 \\
0 & 0 & 1
\end{array}\right] \\
M_{C \rightarrow B} & =\left[\begin{array}{ccc}
1 & -2 / 3 & -4 / 3 \\
0 & -4 / 3 & 4 / 3 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

To verify,

$$
\begin{aligned}
{\left[\begin{array}{ccc}
1 & -2 / 3 & -4 / 3 \\
0 & -4 / 3 & 4 / 3 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
3 / 2 \\
-1 / 4 \\
1
\end{array}\right]_{C} } & =\left[\begin{array}{c}
3 / 2+2 / 12-4 / 3 \\
4 / 12+4 / 3 \\
1
\end{array}\right]_{B} \\
& =\left[\begin{array}{c}
9 / 6+1 / 6-8 / 6 \\
1 / 3+4 / 3 \\
1
\end{array}\right]_{B}=\left[\begin{array}{c}
1 / 3 \\
5 / 3 \\
1
\end{array}\right]_{B}
\end{aligned}
$$

2. Composing Transformations
(a) (2 points) - We start with the house looking like this

- Apply a non-uniform scale: x by $\frac{1}{2}, y$ by $\frac{2}{3}$

- Translate the house so that the centre is at the origin of the world coordinate frame. That is, we perform a translation of $x-\frac{7}{2}, y-3$

- Rotate the house 180 degrees

- Finally, translate the house to match the dashed outline using a translation of $x+1, y+3$

			A												
		F_{w}													
		j													
		O	i												

(b) (2 points) Give the resulting 4×4 transformation matrix. Assume that the transformation leaves z to be unaltered.

$$
\begin{gathered}
{\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & -7 / 2 \\
0 & 1 & 0 & -3 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 / 2 & 0 & 0 & 0 \\
0 & 2 / 3 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]} \\
=\left[\begin{array}{cccc}
-1 / 2 & 0 & 0 & 9 / 2 \\
0 & -2 / 3 & 0 & 6 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

(c) (2 points) What values would need to be assigned to theta, a, b, c, i, j, k, $\mathrm{x}, \mathrm{y}, \mathrm{z}$ in order for the following transformations to yield an identical final transformation?
Note: THREE.Matrix4() constructs an identity matrix. Also note that here we pretend that * does matrix multiplication. In actual JS code, you'd use multiplyMatrices() function instead. Also, we combine our two translation matrices together moving the interior translation left of the rotate flips the signs of $-7 / 2$ and -3 .

```
var m = new THREE.Matrix4();
var m1 = new THREE.Matrix4();
var m2 = new THREE.Matrix4();
var m3 = new THREE.Matrix4();
m1.makeRotateAxis(new THREE.Vector3(i=0,j=0,k=1), theta=180);
m2.makeScale(a=0.5,b=(2.0/3.0), c=1.0);
m3.makeTranslate(x=4.5,y=6.0,z=0.0);
m = m3*m2*m1;
house.geometry.applyMatrix(m);
```

3. Decompose the following complex transformations in homogeneous coordinates into a product of simple transformations (scaling, rotation, translation, shear). Pay attention to the order of transformations.
(a) (1 point)

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]=\underbrace{\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]}_{\substack{\text { Shear on y: } \\
y=y-x}} \cdot \underbrace{\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]}_{\substack{\text { CCW rotation of } 90 \\
\text { on the X-axis }}}
$$

(b) (1 point)

$$
\left[\begin{array}{cccc}
2 & 0 & 0 & -3 \\
0 & 0.2 & 0 & 1 \\
0 & 0 & 5 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]=\underbrace{\left[\begin{array}{cccc}
1 & 0 & 0 & -3 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]}_{\text {Translation }} \cdot \underbrace{\left[\begin{array}{cccc}
2 & 0 & 0 & 0 \\
0 & 0.2 & 0 & 0 \\
0 & 0 & 5 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]}_{\text {Non-uniform scaling }}
$$

(c) (2 points) What are the inverses of the matrices of parts (a) and (b) above?

Hint: if $M=A B$, then $M^{-1}=B^{-1} A^{-1}$
Part A: It is easy to think of the inverse of some rotation of θ degrees as the rotation about the same axis of $-\theta$ degrees. Since we have a very simple shear $y=y-x$, we can invert this shear by applying $y=y+x$. Then using the hint, we find

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]^{-1}=\underbrace{\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]}_{\substack{\text { CW rotation of 90 degrees } \\
\text { on the X-axis }}} \cdot \underbrace{\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]}_{\substack{\text { Shear on y: } \\
y=y+x}}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-1 & -1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Further note: it is useful to recall that \sin is an odd function and \cos is an even function. Thus, the inversions become a flip of the sign for entries with sin, but the entries with cos do not change signs. In fact, the inverse of any rotation matrix is simply its transpose.
Part B:

$$
\left[\begin{array}{cccc}
2 & 0 & 0 & -3 \\
0 & 0.2 & 0 & 1 \\
0 & 0 & 5 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]^{-1}=\left[\begin{array}{cccc}
0.5 & 0 & 0 & 0 \\
0 & 5 & 0 & 0 \\
0 & 0 & 0.2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{cccc}
1 & 0 & 0 & 3 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{cccc}
0.5 & 0 & 0 & 1.5 \\
0 & 5 & 0 & -5 \\
0 & 0 & 0.2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

(d) (2 points) Give the sequence of THREE.js transformations that would produce the same transformation matrix as in part (a) of this question.
Note: THREE.js matrix indexing is column-wise, but initialization is row-wise! So no transposing needed here for hand-initializing our shear matrix m1.
See https://threejs.org/docs/api/math/Matrix4.html.
var m = new THREE.Matrix4();
var m1 = new THREE.Matrix4();
var m2 = new THREE.Matrix4();
m1.set (1, 0, 0, 0,
$-1,1,0,0$,
0, 0, 1, 0,
$0,0,0,1) ;$
m2.makeRotateAxis(new THREE.Vector3(1,0,0), 90);
$\mathrm{m}=\mathrm{m} 1 * \mathrm{~m} 2$;

