
CPSC 314 Computer Graphics
Programming Assignment 4: Ray Tracing

Due 11:59pm, Dec 2nd, 2016

1 Introduction

In this assignment, you will implement a simple ray tracer (or a path tracer if you’re feeling
brave) that renders local illumination, shadowing, and reflection. The supporting geometric
objects will be spheres, planes, triangle meshes, and optionally other types of surfaces.

1.1 Template Code Description

The starting point of the program is defined in main.cpp; it uses the Parser (defined in
parser.hpp and parser.cpp) to parse the scene files (in scenes/ folder, the description of the
format could be found in scenes/basic.ray) and create a Scene object (defined in scene.hpp)
subsequently rendered by the ray tracing step.
The Raytracer (defined in raytracer.hpp and raytracer.cpp) is then used to render the scene.
Rather than generating a screen rendering it renders the scene into an Image object and
outputs the final image as a bmp file (saved by image.hpp).
The scene consists of one or more geometric objects including spheres, planes, triangle
meshes, and conics (defined in object.hpp and object.cpp). Basic math constructs such as
Vector, Matrix, Ray, and Intersection are defined in basic.hpp.
There are three subdirectories: scenes/, meshes/, and referenceResults/. The scenes di-
rectory contains scene descriptions in the .ray format, describing the following scene pa-
rameters: Dimensions, Perspective, LookAt, Material, PushMatrix, PopMatrix, Translate,
Rotate, Scale, Sphere, Plane, Mesh, and PointLight. The comments in those files describe
the format. A few triangle meshes in OBJ format are provided in the meshes directory,
and most of the scene files depend on one or more of these. The referenceResults directory
provides example reference results.
Your code changes should be mostly limited to object.cpp and raytracer.cpp. You do
not need to make any changes to the other source files (unless you wish to do so when
implementing optional extra features). We also strongly recommend that you take a quick
look at basic.hpp, object.hpp, raytracer.hpp, and scene.hpp to become familiar with the C++
classes used. This will help with your coding. The rest of the files: image.hpp, parser.cpp,
and parser.hpp are less critical.

1



CPSC 314 Assignment 4 Due 11:59pm, Dec 2nd, 2016

1.2 Instructions for Compilation and Execution

If you have a favorite IDE, create an empty project and add all the header and source files
in the main directory to it and run. The project doesn’t need any 3rd party libraries. For
Windows users we also provide a sln file for Visual Studio 2013. For Linux (e.g. all the
department undergrad machines), we provide a Makefile to compile the project. To compile,
simply type make command in the main directory. Attn Mac users: Due to a bug in standard
library in the latest MacOS, scene files may not be loaded properly. If that’s the case, you can
still debug it on your Mac, but not using scene files. You’ll have to perform actual testing
on some Linux or Windows machine.
To run the executable:

./a4.exe
or ./raytracer

By default, this should render a scene with only a red cube and save the resulting image
as default out.bmp in the scenes/ folder, where there will also be a depth image saved as
default out depth.bmp, in which white means far, dark means near.
To run the executable and render a different scene, pass it as the first argument:

./a4.exe your scene file path

The resulting images will also be saved in scenes/ folder named your scene file path out.bmp
and your scene file path out depth.bmp. For simple scenes, it needs several seconds to render
a scene. However, once you have meshes, you will quickly realize why we are using C++ for
this assignment.

2 Assignment (Total: 100pts)

The raytracer should cast primary rays into the scene, which spawn shadow rays and sec-
ondary reflection/refraction rays. Note that rendering very complicated scenes with many
primitives (eg: the provided teapot mesh has thousands of triangles) can take a long time!
Do not change any of the scene files, we will compare your results with our reference images
to do the marking. We strongly recommend that you follow the outlined sequence of the
goals and implement them step by step. Make sure you understand what you are doing at
each point - we will ask you about your code during marking. Please make sure you use the
correct template as a starting point for your code. Failure to do so will result in a grade of
zero.
Alternatively, you can instead implement the Path Tracing algorithm. In Path Tracing,

implementing the core functionality is harder, but getting the creative part done is much
easier.

Page 2 of 5



CPSC 314 Assignment 4 Due 11:59pm, Dec 2nd, 2016

2.1 Shooting Rays (20pts)

1. Implement the missing parts of Raytracer::render for basic ray casting for all pixels in
the image, using the camera location and the coordinates of each pixel. You can test
this code by re-computing the pixel as the intersection of the ray and the view plane
and testing that you obtain the same coordinates back.

2. Implement the missing parts of Raytracer::trace to iteratively test all the object’s
intersection with the given ray. Set the depth to be the first intersection’s depth. Once
you implement one of the intersection test functions, you should be able to see some
information on your depth output image.

2.2 Intersection Tests (15pts)

In this part you will first implement a number of intersection tests and use those in the
previously written functions for casting primary rays. The result of these two steps is a
depth image showing the depth information for a given scene. We will mark these two parts
using the depth images generated by your program.

Steps:

1. Implement Sphere::localIntersect. For this part you are required to calculate if a ray
has intersected your sphere. Be sure to cover all the possible intersection scenarios(zero,
one, and two points of intersection). Test your result by comparing the output depth
image of your algorithm with the provided example solution’s results.

2. Implement Plane::localIntersect. The implementation of this part is similar to the
previous part in that you are calculating if a line has intersected your plane. Test this
function in a similar way to the previous part (note that as you do so new objects will
appear).

3. Implement Mesh::intersectTriangle. This function calculates the point of intersection
of a ray with a triangle. The difference in this part when compared to the plane
intersection is in the bounds you must check. Think back through the course and try
to decide what equations might help you decide on which side of the bounding lines of
the triangle does a ray intersection happen. Test this part just like the above two parts;
when triangle intersection is working properly, you should be able to see full meshes
appear in your scenes. Think how would you compute a normal at the intersection
point.

You can first implement the intersection test for some of the geometries and focus on the
subsequent parts, then after you complete the whole system, you can go back to implement
the tests for other geometries.

Page 3 of 5



CPSC 314 Assignment 4 Due 11:59pm, Dec 2nd, 2016

2.3 Local Illumination (10pts)

Implement the missing part of Raytracer::shade that does a lighting calculation to find the
color at a point. You can first assume that all the light sources are directly visible. You
should calculate the ambient, diffuse, and specular terms. You should think of this part in
terms of determining the color at the point where the ray intersects the scene. After you
finished, you will be able to get colored resulting images with local illumination, just like in
programming assignment 3. Test your results by comparing to the ground truth ones.

2.4 Shadowing (10pts)

Implement the shadow ray calculation in Raytracer::shade and update the lighting computa-
tion accordingly. Shoot the shadow rays from a point you’re computing direct illumination
for to determine which lights are contributing to the lighting at that point. Be careful to
exclude the origin of the ray from the list of intersection points, but do remember that the
intersection points could include other points on the same object if the object is not convex
(for example, the teapot). For points in the shadow, scale their original lighting induced
color by the factor (1 −material.shadow).

2.5 Reflection (25pts)

Implement the secondary ray recursion for reflection in Raytracer::shade. Use the rayDepth
recursion depth variable to stop the recursion process. (The default used in the solution was
10.) Update the lighting computation at each step to account for the secondary component.
You can think of this part as an extended shadow ray calculation, recursively iterating to
determine contributing light and adding newly determined light sources into the original
pixel color computation.

2.6 Creative License (20pts)

Implement this part only after you are fully done with the previous tasks. Here we provide
some suggestions on what you might explore (depending on complexity one or two of these
may be enough for a full score):

1. Conic Geometry: Implement Conic::localIntersect to enable intersections between
the rays and generalized conical surfaces (http://en.wikipedia.org/wiki/Conical sur-
face). Note that this task requires detecting the bounding circles of the conics and
accurately handling those (to get finite cylinders/cones/ellipsoid parts).

2. Refraction: Implement secondary ray recursion for refraction rays. Use the same re-
cursion depth variable rayDepth as for reflection to stop the recursion process. Update
the lighting computation at each step to account for the secondary component.

3. Texturing Implement texture support as part of your rendering scheme. You may
need to use a 3rd party library, like OpenCV or libpng, to import textures and access
the texture during ray tracing to get a local diffuse color.

Page 4 of 5



CPSC 314 Assignment 4 Due 11:59pm, Dec 2nd, 2016

4. Speed Speed up your method using any of the space-partitioning methods discussed
in class. Compare your result to the original version of your raytracer. The dragon is
a good test case here.

5. Gloss Use randomized direction estimation to account not only for specular but also
for glossy surfaces.

6. Other options: Nomal Mapping, GPU Raytracing, Ambient Occlusion, or Soft Shad-
ows.

Note that creating new scenes by writing your own scene files does not count as
a creative license, but is certainly fun to do.

Hand-in Instructions: You do not have to hand in any printed code. Create a
README.txt file that includes your name, student number, and login ID, and any in-
formation you would like to pass on to the marker. Create a folder called “a4” under your
“cs314” directory. Put all the source files, your makefile, and your README.txt file for each
part in the folder. Do not use further sub-directories. The assignment should be handed in
with the exact command:

handin cs314 a4

Page 5 of 5


