LINES AND CURVES

• Explicit - one coordinate as function of the others

\[y = f(x) \]
\[z = f(x, y) \]

Line
\[y = mx + b \]
\[y = \frac{(y_2 - y_1)}{(x_2 - x_1)}(x - x_1) + y_1 \]

Circle
\[y = \pm \sqrt{r^2 - x^2} \]
LINES AND CURVES

- Parametric – all coordinates as functions of common parameters

\[(x, y) = (f_1(t), f_2(t))\]
\[(x, y, z) = (f_1(u,v), f_2(u,v), f_3(u,v))\]

Line

\[x(t) = x_1 + t(x_2 - x_1)\]
\[y(t) = y_1 + t(y_2 - y_1)\]
\[t \in [0, 1]\]

Circle

\[x(\theta) = r \cos(\theta)\]
\[y(\theta) = r \sin(\theta)\]
\[\theta \in [0, 2\pi]\]
LINES AND CURVES

- Implicit - define as “zero set” of some function

\[\{(x, y) : F(x, y) = 0\} \]
\[\{(x, y, z) : F(x, y, z) = 0\} \]

- May define meaningful partition of space

\[\{(x, y) : F(x, y) > 0\}, \{(x, y) : F(x, y) = 0\}, \{(x, y) : F(x, y) < 0\} \]
LINES AND CURVES - IMPLICITS

Line

\[Ax + By + C = 0 \]

- \((A, B) \) - normal

Circle

\[(x - c_x)^2 + (y - c_y)^2 - r^2 = 0 \]
PLANE - IMPLICIT

\[Ax + By + Cz + D = 0 \]
ARBITRARY IMPLICIT FUNCTION

\[F(x, y, z) = 0 \]

\[n(x, y, z) = \nabla F(x, y, z) = \begin{pmatrix} \frac{\partial F(x, y, z)}{\partial x} \\ \frac{\partial F(x, y, z)}{\partial y} \\ \frac{\partial F(x, y, z)}{\partial z} \end{pmatrix} \]
CLIPPING

What’s the purpose of clipping?

How is it done?

When is it done in pipeline?

Why do we need near/far planes?
PIPELINE EXPANDED

Vertex Shader

- Modelling transformation
- World transformation
- Camera transformation
- Projection

Vertices → Object Coordinate System → Modelview transform → World Coordinate System → Camera Coordinate System → Clip Coordinate System → Per-vertex attributes

Vertex Post-Processing

- Clipping
- Perspective divide
- Viewport transform

Clipping → Perspective divide → Viewport transform → Normalized Device Coordinates → Window Coordinates
VIEWPORT TRANSFORM

• What does it do?

\[
\begin{bmatrix}
x_w \\
y_w \\
z_w \\
1
\end{bmatrix}
= \begin{bmatrix}
W/2 & 0 & 0 & (W-1)/2 \\
0 & H/2 & 0 & (H-1)/2 \\
0 & 0 & 1/2 & 1/2 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x_n \\
y_n \\
z_n \\
1
\end{bmatrix}
\]
RASTERIZATION

• This is part of the fixed function pipeline

• Input: clipped polygons

• Output: fragments (with varying variables interpolated)
SCAN CONVERSION: IDEA

A point is inside \(\Leftrightarrow \)
\[
A_i x + B_i y + C > 0, i = 1, \ldots, 3
\]
HOW TO TREAT BOUNDARY?

• If two triangles share an edge, scan conversion should be consistent
 • No pixel drawn twice
 • No gaps

• E.g. draw left edge, don’t draw right one
SCANLINE IDEA (SIMPLIFIED)

- Basic structure of code:
 - Setup: compute edge equations, bounding box
 - (Outer loop) For each scanline in bounding box...
 - (Inner loop) ...check each pixel on scanline, evaluating edge equations and drawing the pixel if all three are positive
```
findBoundingBox(xmin, xmax, ymin, ymax);
setupEdges (a0,b0,c0,a1,b1,c1,a2,b2,c2);

for (int y = yMin; y <= yMax; y++) {
    for (int x = xMin; x <= xMax; x++) {
        float e0 = a0*x + b0*y + c0;
        float e1 = a1*x + b1*y + c1;
        float e2 = a2*x + b2*y + c2;
        if (e0 > 0 && e1 > 0 && e2 > 0)
            Image[x][y] = TriangleColor;
    }
}
```
// more efficient inner loop
for (int y = yMin; y <= yMax; y++) {
 float e0 = a0*xMin + b0*y + c0;
 float e1 = a1*xMin + b1*y + c1;
 float e2 = a2*xMin + b2*y + c2;
 for (int x = xMin; x <= xMax; x++) {
 if (e0 > 0 && e1 > 0 && e2 > 0)
 Image[x][y] = TriangleColor;
 e0 += a0; e1 += a1; e2 += a2;
 }
}
SCAN CONVERSION

• What are problems of scan conversion?
• How to find a bounding box?
• How to scan-convert an arbitrary polygon?
INTERPOLATION

• What does it do?
INTERPOLATION – ACCESS TRIANGLE INTERIOR

• Interpolate between vertices:
 • z
 • r,g,b – colour components
 • u,v – texture coordinates
 • N_x, N_y, N_z – surface normals

• Equivalent
 • Barycentric coordinates
 • Bilinear interpolation
 • Plane Interpolation
SIMPLER:

How to interpolate color between two points?

\[c(t) \approx c(0) \cdot (1 - t) + c(1) \cdot t \]

Linear interpolation
BI-LINEAR INTERPOLATION

\[P = \frac{c_2}{c_1 + c_2} \cdot P_L + \frac{c_1}{c_1 + c_2} \cdot P_R \]

\[P_L = \frac{d_2}{d_1 + d_2} P_2 + \frac{d_1}{d_1 + d_2} P_3 \]

\[P_R = \frac{b_2}{b_1 + b_2} P_2 + \frac{b_1}{b_1 + b_2} P_1 \]

\[P = \frac{c_2}{c_1 + c_2} \left(\frac{d_2}{d_1 + d_2} P_2 + \frac{d_1}{d_1 + d_2} P_3 \right) + \frac{c_1}{c_1 + c_2} \left(\frac{b_2}{b_1 + b_2} P_2 + \frac{b_1}{b_1 + b_2} P_1 \right) \]
BARYCENTRIC COORDINATES

- Area

\[A = \frac{1}{2} \left| \overrightarrow{P_1P_2} \times \overrightarrow{P_1P_3} \right| \]

- Barycentric coordinates

\[a_1 = \frac{A_{P_2P_3P}}{A}, a_2 = \frac{A_{P_3P_1P}}{A}, a_3 = \frac{A_{P_1P_2P}}{A}, \]

\[P = a_1P_1 + a_2P_2 + a_3P_3 \]

\[f(P) \approx a_1f(P_1) + a_2f(P_2) + a_3f(P_3) \]
Barycentric Coordinates

- weighted (affine) combination of vertices

\[P = a_1 \cdot P_1 + a_2 \cdot P_2 + a_3 \cdot P_3 \]

- \(a_1 + a_2 + a_3 = 1 \)
- \(0 \leq a_1, a_2, a_3 \leq 1 \)
BARYCENTRIC COORDINATES

- Positive inside the triangle
- Always sum up to 1
- If we extend barycentric coordinates outside the triangle,
 \[A = \frac{1}{2} \left\| \overrightarrow{P_1P_2} \times \overrightarrow{P_1P_3} \right\| \]
 \[A = \frac{1}{2} (P_1P_2 \times P_1P_3)_z \]
- We have signed areas
- Outside the triangle at least one coordinate < 0
ISSUE WITH INTERPOLATION UNDER PERSPECTIVE PROJECTION
Texture coordinate interpolation
• Perspective foreshortening problem
• Also problematic for color interpolation, etc.
INTERPOLATION: SCREEN VS. WORLD SPACE

- Screen space interpolation incorrect under perspective
 - Problem ignored with shading, but artifacts more visible with texturing
TEXTURE COORDINATE INTERPOLATION

• Perspective Correct Interpolation
• α, β, γ : Barycentric coordinates (2D) of point P
• s_0, s_1, s_2 : texture coordinates of vertices
• w_0, w_1, w_2 : homogenous coordinate of vertices

$$s = \frac{\alpha \cdot s_0 / w_0 + \beta \cdot s_1 / w_1 + \gamma \cdot s_2 / w_2}{\alpha / w_0 + \beta / w_1 + \gamma / w_2}$$

• Similarly for t

Derivation (similar triangles):
LIGHT SOURCES

• Point source
 • light originates at a point
 • Rays hit planar surface at different angles

• Parallel source
 • light rays are parallel
 • Rays hit a planar surface at identical angles
 • May be modeled as point source at infinity
 • Directional light
LIGHT

- Light has color
- Interacts with object color \((r,g,b)\)
 \[
 I = I_a k_a \\
 I_a = (I_{ar}, I_{ag}, I_{ab}) \\
 k_a = (k_{ar}, k_{ag}, k_{ab}) \\
 I = (I_r, I_g, I_b) = (I_{ar} k_{ar}, I_{ag} k_{ag}, I_{ab} k_{ab})
 \]

- Blue light on white surface?
- Blue light on red surface?
DIFFUSE REFLECTION

- Illumination equation is now:

\[I = I_a k_a + I_p k_d (N \cdot L) = I_a k_a + I_p k_d \cos \theta \]

- \(I_p \) - point/parallel source’s intensity
- \(k_d \) - surface diffuse reflection coefficient

- Can we locate light source from shading?
SPECULAR REFLECTION

- Shiny objects (e.g. metallic) reflect light in preferred direction R determined by surface normal N.

- Most objects are not ideal mirrors - reflect in the immediate vicinity of R.
• For multiple light sources:

\[
I = I_a k_a + \sum_p \frac{I_p}{d_p^2} (k_d (N \cdot L_p) + k_s (R_p \cdot V)^n)
\]

• \(d_p\) - distance between surface and light source + distance between surface and viewer (Heuristic atmospheric attenuation)
FLAT SHADING

• Illumination value depends only on polygon normal
 • each polygon colored with uniform intensity
• Not adequate for polygons approximating smooth surface
• Looks non-smooth
 • worsened by Mach bands effect
GOURARD SHADING

- Polyhedron - approximation of smooth surface
 - Assign to each vertex normal of original surface at point
 - If surface not available use estimate normal
- Compute illumination intensity at vertices using those normals
- Linearly interpolate vertex intensities over interior pixels of polygon projection
PHONG SHADING

• Interpolate (in image space) normal vectors instead of intensities
• Apply illumination equation for each interior pixel with its own normal

\[n_4 = \alpha_1 n_1 + (1 - \alpha_1) n_2 \]
\[n_5 = \alpha_2 n_1 + (1 - \alpha_2) n_3 \]

\[n(x, y) = \alpha_3 n_4 + (1 - \alpha_3) n_5 \]

\[c(x, y) = Ill(n(x, y)) \]
Texture Mapping

(u, v) parameterization in OpenGL
EXAMPLE TEXTURE MAP

```
glTexCoord2d(4, 4);
glVertex3d(x, y, z);
```

```
(4,4)
```

```
(0,4)
```

```
glTexCoord2d(1, 1);
glVertex3d(x, y, z);
```

```
(1,0)
```

```
(1,1)
```

```
(0,1)
```

```
(0,0)
```

```
Textured Object
```

```
Mapped Texture
```

```
Texture
```

```
Object
```

```
Mapped Texture
```

EXAMPLE TEXTURE MAP
RECONSTRUCTION

• how to deal with:
 • pixels that are much larger than texels?
 • minification

 • pixels that are much smaller than texels?
 • magnification
MIPMAPPING

use “image pyramid” to precompute averaged versions of the texture

store whole pyramid in single block of memory
SHADOWS

Need at least 2 shader passes:

1. Draw everything as it’s viewed from the LIGHT SOURCE
 Depth per pixel (‘depth map’)
SHADOW MAPS

Need at least 2 shader passes:

1. Draw everything as it’s viewed from the LIGHT SOURCE Depth per pixel (‘depth map’).
2. Now draw everything from CAMERA.
When computing color per pixel:

- Find corresponding depth map pixel: D - distance from light source
- Is distance from me to the camera > D?
 - Yes: I am occluded! I’m in SHADOW.
 - No: I’m LIT!
BUMP MAPPING: NORMALS AS TEXTURE

• object surface often not smooth – to recreate correctly need complex geometry model
• can control shape “effect” by locally perturbing surface normal
 • random perturbation
 • directional change over region
BUMP MAPPING

\[O'(u) \]
Lengthening or shortening \[O(u) \] using \[B(u) \]

\[N'(u) \]
The vectors to the ‘new’ surface
DISPLACEMENT MAPPING

• bump mapping gets silhouettes wrong
 • shadows wrong too

• change surface geometry instead
 • only recently available with realtime graphics
 • need to subdivide surface

CUBE MAPPING

• 6 planar textures, sides of cube
 • point camera in 6 different directions, facing out from origin
PAINTER’S ALGORITHM: PROBLEMS

- Intersecting polygons present a problem
- Even non-intersecting polygons can form a cycle with no valid visibility order:
• Store \((r, g, b, z)\) for each pixel
 • typically 8+8+8+24 bits, can be more

\[
\begin{aligned}
&\text{for all } i, j \{ \\
&\quad \text{Depth}[i, j] = \text{MAX_DEPTH} \\
&\quad \text{Image}[i, j] = \text{BACKGROUND_COLOUR} \\
&\}\}
\]

\[
\begin{aligned}
&\text{for all polygons } P \{ \\
&\quad \text{for all pixels in } P \{ \\
&\quad\quad \text{if } (Z_pixel < \text{Depth}[i, j]) \{ \\
&\quad\quad\quad \text{Image}[i, j] = C_pixel \\
&\quad\quad\quad \text{Depth}[i, j] = Z_pixel \\
&\quad\quad \}
&\quad \}
&\}
\end{aligned}
\]
DEPTH TEST

• Why is it after FS?
DEPTH TEST PRECISION

- Reminder: projective transformation maps eye-space z to generic z-range (NDC)
- Simple example:

\[
T \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & a & b \\ 0 & 0 & -1 & 0 \end{bmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}
\]

- Thus:

\[
z_{NDC} = \frac{az_{eye} + b}{-z_{eye}} = -a - \frac{b}{z_{eye}}
\]
Therefore, depth-buffer essentially stores $-1/z$, rather than z!

- Issue with **integer** depth buffers
 - High precision for near objects
 - Low precision for far objects

DEPTH TEST PRECISION
DEPTH TEST PRECISION

- Low precision can lead to depth fighting for far objects
 - Two different depths in eye space get mapped to same depth in framebuffer
 - Which object “wins” depends on drawing order and scan-conversion

- Gets worse for larger ratios $f:n$
 - Rule of thumb: $f:n < 1000$ for 24 bit depth buffer

\[
\frac{dz_{NDC}}{dz_{eye}} = \frac{-2fn}{(f-n)z_{eye}^2} = -\frac{2f}{(\frac{f}{n}-1)z_{eye}^2}
\]