Textbook: 12.4

UGRAD.CS.UBC.CA/~CS314

Mikhail Bessmeltsev
THE RENDERING PIPELINE

Vertices and attributes

Vertex Shader
- Modelview transform
- Per-vertex attributes

Vertex Post-Processing
- Viewport transform
- Clipping

Rasterization
- Scan conversion
- Interpolation

Fragment Shader
- Texturing/...
- Lighting/shading

Per-Sample Operations
- Depth test
- Blending

→ Framebuffer
RASTERIZATION

• This is part of the fixed function pipeline

• Input: all polygons are clipped
• Output: fragments (with \textit{varying variables} interpolated)
PATH FROM VERTEX TO PIXEL

Assembler

Clipping | Divide-by-W | Culling | Viewport

Window coordinates
Varying variables

Rasterizer

gl_Position
Varying variables

Varying variables
z_w
Interactive graphics uses Polygons

- Can represent any surface with arbitrary accuracy
 - Splines, mathematical functions, ...
- Simple, regular rendering algorithms
 - embed well in hardware
POLYGONS

• Basic Types

- simple convex
- simple concave
- non-simple (self-intersection)
FROM POLYGONS TO TRIANGLES

• why? triangles are always planar, always convex

• simple convex polygons
 • trivial to break into triangles

• concave or non-simple polygons
 • more effort to break into triangles
WHAT IS SCAN CONVERSION? (A.K.A. RASTERIZATION)

• screen is discrete
• one possible scan conversion
HOW TO CHECK IF A PIXEL IS INSIDE?
HOW TO CHECK IF A PIXEL IS INSIDE?

• Use implicit line equation:
 • $Ax + By + C = 0$
 • What is geometric meaning of A,B,C?

• How to find A,B,C?

• Orientation?
HOW TO CHECK IF A PIXEL IS INSIDE?

• Use implicit line equation:
 • $Ax + By + C = 0$
 • What is geometric meaning of A,B,C?
 • (A,B) is a normal (not unit!) to the line
 • C is translation of that line

• How to find A,B,C?
 • Option 1. Solve a system of 2 equations
 • Option 2. Find any normal

• Orientation?
 • Normal points in positive side
HOW TO CHECK IF A PIXEL IS INSIDE?

A point is inside \(\Leftrightarrow \)

\[A_i x + B_i y + C > 0, \quad i = 1, \ldots, 3 \]
HOW TO TREAT BOUNDARY?
HOW TO TREAT BOUNDARY?

• If two triangles share an edge, scan conversion should be consistent
 • No pixel drawn twice
 • No gaps

• Strategy ideas?
NAÏVE SCAN CONVERSION

- Testing every pixel is suboptimal
- Better ideas?
LESS NAÏVE SCAN CONVERSION

• Go over each pixel in bounding rectangle
• Check if pixel is inside/outside of triangle
 • Use sign of edge equations
Scanline Idea (Simplified)

• Basic structure of code:
 • Setup: compute edge equations, bounding box
 • (Outer loop) For each scanline in bounding box...
 • (Inner loop) ...check each pixel on scanline, evaluating edge equations and drawing the pixel if all three are positive
findBoundingBox(xmin, xmax, ymin, ymax);
setupEdges (a0,b0,c0,a1,b1,c1,a2,b2,c2);

for (int y = yMin; y <= yMax; y++) {
 for (int x = xMin; x <= xMax; x++) {
 float e0 = a0*x + b0*y + c0;
 float e1 = a1*x + b1*y + c1;
 float e2 = a2*x + b2*y + c2;
 if (e0 > 0 && e1 > 0 && e2 > 0)
 Image[x][y] = TriangleColor;
 }
}
// more efficient inner loop
for (int y = yMin; y <= yMax; y++) {
 float e0 = a0*xMin + b0*y + c0;
 float e1 = a1*xMin + b1*y + c1;
 float e2 = a2*xMin + b2*y + c2;
 for (int x = xMin; x <= xMax; x++) {
 if (e0 > 0 && e1 > 0 && e2 > 0)
 Image[x][y] = TriangleColor;
 e0 += a0; e1+= a1; e2 += a2;
 }
}
TRIANGLE RASTERIZATION ISSUES

• Exactly which pixels should be lit?
• A: Those pixels inside the triangle edges
• What about pixels exactly on the edge?
TRIANGLE RASTERIZATION ISSUES

- Sliver

- Moving Slivers
ALIASING & ANTI-ALIASING

HOW TO TEST IF A POINT IS IN A POLYGON?

- Simple convex
- Simple concave
- Non-simple (self-intersection)
VALUES IN THE INTERIOR

Barycentric coordinates
Interpolate between vertices:

- z
- r,g,b - colour components
- u,v - texture coordinates
- N_x, N_y, N_z - surface normals

Equivalent

- Barycentric coordinates
- Bilinear interpolation
- Plane Interpolation
SIMPLER:

How to interpolate color between two points?
SIMPLER:

How to interpolate color between two points?

\[c(t) = c(0) \cdot (1 - t) + c(1) \cdot t \]

Linear interpolation
SIMPLER:

How to interpolate color between two points?

\[c(t) \approx c(0) \cdot (1 - t) + c(1) \cdot t \]

Linear interpolation
SIMPLE GENERALIZATION: BI-LINEAR INTERPOLATION

• Interpolate quantity along L and R edges
 • (as a function of y)
 • Then interpolate quantity as a function of x
BI-LINEAR INTERPOLATION

\[P = \frac{c_2}{c_1 + c_2} \cdot P_L + \frac{c_1}{c_1 + c_2} \cdot P_R \]

\[P_L = \frac{d_2}{d_1 + d_2} P_2 + \frac{d_1}{d_1 + d_2} P_3 \]

\[P_R = \frac{b_2}{b_1 + b_2} P_2 + \frac{b_1}{b_1 + b_2} P_1 \]
BARYCENTRIC COORDINATES

• Area

\[A = \frac{1}{2} \left\| \overrightarrow{P_1P_2} \times \overrightarrow{P_1P_3} \right\| \]

• Barycentric coordinates

\[a_1 = \frac{A_{P_2P_3P}}{A}, a_2 = \frac{A_{P_3P_1P}}{A}, \]
\[a_3 = \frac{A_{P_1P_2P}}{A}, \]

\[P = a_1 P_1 + a_2 P_2 + a_3 P_3 \]
BARYCENTRIC COORDINATES

- Imagine there are little heavy objects at the vertices
- If P is the center of mass of such triangle,
- What are the masses of those objects?

- Those are the barycentric coordinates.

- (That’s an equivalent definition. Why?)
BARYCENTRIC COORDINATES

• weighted (affine) combination of vertices

\[P = a_1 \cdot P_1 + a_2 \cdot P_2 + a_3 \cdot P_3 \]

\[a_1 + a_2 + a_3 = 1 \]

\[0 \leq a_1, a_2, a_3 \leq 1 \]
BARYCENTRIC COORDINATES
NOTE:

• In reality, only two values are enough to encode a point in a triangle
• We added a 3rd one – a similar idea to homogeneous coordinates!

• Those are, however, unique because of this:

\[a_1 + a_2 + a_3 = 1\]
BARYCENTRIC COORDINATES

- Are used to interpolate
 - z
 - all varying variables
 - color
 - normals

- Why do we interpolate z?

- Problems when using perspective camera. We'll see later (in texture mapping)