Lighting

- Goal
 - Model the interaction of light with surfaces to render realistic images
 - Generate per (pixel/vertex) color
Factors

- Light sources
 - Location, type & color
- Surface materials
 - How surfaces reflect light
- Transport of light
 - How light moves in a scene
- Viewer position

Illumination Models/Algorithms

- Local illumination - Fast
 - Ignore real physics, approximate the look
 - Interaction of each object with light
 - Compute on surface (light to viewer)
- Global illumination – Slow
 - Physically based
 - Interactions between objects
The big picture (basic)

- Light: energy in a range of wavelengths
 - White light – all wavelengths
 - Colored (e.g. red) – subset of wavelengths
- Surface “color” – reflected wavelength
 - White – reflects all lengths
 - Black – absorbs everything
 - Colored (e.g. red) absorbs all but the reflected color
- Multiple light sources add (energy sums)

Materials

- Surface reflectance:
 - Illuminate surface point with a ray of light from different directions
 - How much light is reflected in each direction?
Basic Types

Most surfaces exhibit complex reflectances that vary with incident and reflected directions. Model with combination known as **BRDF**:

Reflectance Distribution Function

- BRDF: Bidirectional Reflectance Distribution Function

Reflectance Distribution Model

- Most surfaces exhibit complex reflectances
 - Vary with incident and reflected directions.
 - Model with combination known as **BRDF**

Reflectance Distribution Function
Lambert’s “Law”

Intuitively: cross-sectional area of the “beam” intersecting an element of surface area is smaller for greater angles with the normal.
Computing Diffuse Reflection

- Depends on **angle of incidence**: angle between surface normal and incoming light
 - $I_{\text{diffuse}} = k_d \cdot I_{\text{light}} \cdot \cos(\theta)$
- In practice use vector arithmetic
 - $I_{\text{diffuse}} = k_d \cdot I_{\text{light}} \cdot (n \cdot l)$
- Always normalize vectors used in lighting
 - n, l should be unit vectors
- Scalar (B/W intensity) or 3-tuple (color)
 - k_d: diffuse coefficient, surface color
 - I_{light}: incoming light intensity
 - I_{diffuse}: outgoing light intensity (for diffuse reflection)

Diffuse Lighting Examples

- Lambertian sphere from several lighting angles:

![Lambertian sphere from several lighting angles](image)

- need only consider angles from 0° to 90°
Physics of Specular Reflection

- Geometry of specular (perfect mirror) reflection
 - Snell’s law

Snell’s law = perfect mirror-like surfaces
- But ..
 - few surfaces exhibit perfect specularity
 - Gaze and reflection directions never EXACTLY coincide
- Expect **most** reflected light to travel in direction predicted by Snell’s Law
- But some light may be reflected in a direction slightly off the ideal reflected ray
- As angle from ideal reflected ray increases, we expect less light to be reflected

Empirical Approximation
Empirical Approximation

- Angular falloff

\[
\begin{align*}
\vec{l} & \rightarrow \vec{n} \\
\theta_j & \\
\vec{r}
\end{align*}
\]

- How to model this falloff?

Phong Lighting

- Most common lighting model in computer graphics
 - (Phong Bui-Tuong, 1975)

\[
\begin{align*}
I_{\text{specular}} & = k_s I_{\text{light}} (\cos \phi)^{n_s} \\
I_{\text{specular}} & = k_s I_{\text{light}} (\vec{v} \cdot \vec{r})^{n_s}
\end{align*}
\]

\(\phi\): angle between \(\vec{r}\) and view direction \(\vec{v}\)

\(n_s\): purely empirical constant, varies rate of falloff

\(k_s\): specular coefficient, highlight color

no physical basis, "plastic" look
Phong Examples

varying light position

varying n_s

Blinn-Phong model (Jim Blinn, 1977)

Variation with better physical interpretation

h: halfway vector; r: roughness

$$I_{\text{specular}} = k_s \cdot (h \cdot n)^{1/r} \cdot I_{\text{light}}; \text{ with } h = (1 + v)/2$$
Light is **linear**
- If multiple rays illuminate the surface point the result is just the sum of the individual reflections for each ray

\[
\sum I_p (k_d (n \cdot l_p) + k_r (r_p \cdot v)^n)
\]

Ambient Light
- Non-directional light – environment light
- Object illuminated with same light everywhere
 - Looks like silhouette
- Illumination equation \(I = I_a k_a \)
 - \(I_a \) - ambient light intensity
 - \(k_a \) - fraction of this light reflected from surface
Light Source Types

- **Point Light**
 - light originates at a point

- **Directional Light (point light at infinity)**
 - light rays are parallel
 - Rays hit a planar surface at identical angles

- **Spot Light**
 - point light with limited angles

Light Source Falloff

- Quadratic falloff (point- and spot lights)
 - Brightness of objects depends on power per unit area that hits the object
 - The power per unit area for a point or spot light decreases quadratically with distance

\[
\text{Area } 4\pi r^2
\]

\[
\text{Area } 4\pi(2r)^2
\]
Illumination Equation

- For multiple light sources:

\[I = I_a k_a + \sum p \frac{I_p}{A(d_p)} (k_d (n \cdot l_p) + k_l (r_p \cdot v)^\alpha) \]

- \(d_p \) - distance between surface and light source
- + distance between surface and viewer, \(A \) – attenuation function

\[A(d) \propto \frac{1}{d^2} \]

Light

- Light has color
- Interacts with object color (r,g,b)

\[I = I_a k_a \]
\[I_a = (I_{ar}, I_{ag}, I_{ab}) \]
\[k_a = (k_{ar}, k_{ag}, k_{ab}) \]
\[I = (I_r, I_g, I_b) = (I_a k_{ar}, I_a k_{ag}, I_a k_{ab}) \]

- Blue light on white surface?
- Blue light on red surface?

\[I_a = (I_{ab}, I_{ag}, I_{ar}) \]
\[k_a = (I_r, I_g, I_b) \]
Light and Material Specification

- Light source: amount of RGB light emitted
 - value = percentage of full intensity, e.g., (1.0, 0.5, 0.5)
 - every light source emits ambient, diffuse, and specular light
- Materials: amount of RGB light reflected
 - value represents percentage reflected e.g., (0.0, 1.0, 0.5)
- Interaction: multiply components
 - Red light (1,0,0) x green surface (0,1,0) = black (0,0,0)

When to apply Lighting Model?

- per polygon
 - “flat shading”
- per vertex
 - “Gouraud shading”
- per pixel
 - “per pixel lighting”, “Phong shading”
Colored Wireframes

Ambient Lighting
Per-Polygon Shading

Per Vertex shading
Per Pixel Shading

Curved Surfaces with Per-pixel Shading
Complex Lighting and Shading

Texture Mapping
Displacement Mapping

Reflection Mapping
Global Illumination

Subsurface scattering