1. Light and shading

 (a) Given a scene with two non specular objects, one yellow ($k_a = k_d = (1, 1, 0)$) and one red ($k_a = k_d = (1, 0, 0)$), classify the following statement as true or false. Explain.

 i. (1 point) Given a single point light source with intensity $I_p = (1, 0, 0)$ the objects will have the same shading.

 ii. (1 point) Given a single ambient light source with intensity $I_a = (1, 0, 0)$ the objects will have the same shading.

 (b) (1 point) Write the openGL code for defining the following lighting scenario with three light sources: ambient light source with intensity $I_a = (0.3, 0, 0)$; directional light with direction $(1, 0, 0)$ and intensity $(0.6, 0.6, 0.6)$; point light at $(10, 0, 0)$.

 (c) (1 point) In openGL define the material properties for a triangle with $k_a = (1, .5, .5)$, $k_d = (1, .5, .5)$, $k_s = (.5, .5, .5)$ and specularity coefficient $n = 16$.
(d) In the scene below there is one directional light source at infinity \((\infty, 0, 0)\) with direction \((-1, 0, 0)\). The view direction is the same as light direction \((-1, 0, 0)\). The shading coefficients for the triangle are \(k_a = k_d = (1, 0, 0), \ k_s = (0, 1, 0)\) and the specularity coefficient is \(n = \infty\).

Compute the color at point \(P\) on the triangle using the following shading algorithms (use per-face or per-vertex normals as necessary):

i. (2 points) Flat shading,

ii. (2 points) Gourard shading,

iii. (2 points) Phong shading.
2. Ray-Tracing

(a) (3 points) Draw the ray tree for the ray \(R \) shown below. Assume index of refraction \(c_1 \) for air is 1 and index of refraction for all the transparent objects in the scene is \(c_2 = \frac{1}{\sqrt{2}} \). Use Snell’s law to obtain refraction angles.

(b) (2 points) Assume the transparency coefficient \(\alpha \) for the transparent objects is .5, the light intensity is \(I_p = (1, 1, 1) \) (no other lights), and the diffuse/specular coefficients for the objects are \(k_{d1} = (1, 0, 0), k_{s1} = (0, 0, 0), k_{d2} = (0, 0, 0), k_{s2} = (1, 1, 1), k_{d3} = (0, 0, 0), k_{s3} = (1, 1, 1), k_{d4} = (0, 1, 0), k_{s4} = (0, 0, 0) \). What is the color returned by the ray tracing algorithm for ray \(R \)?
3. Texture Mapping.

(a) (3 points) The following texture is stored in the array image of size $imgx \times imgy$ (256×256).

Draw the textured triangle produced by the following code:

```cpp
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, imgx, imgy, 0,
                 GL_RGBA, GL_UNSIGNED_BYTE, image);
    glEnable(GL_TEXTURE_2D);
    glBegin(GL_POLYGON);
    glVertex3d( 0, 0, 0 );
    glVertex3d( 1, 0, 0 );
    glVertex3d( 1, 1, 0 );
    glVertex3d( 0, 1, 0 );
    glEnd();
```

(b) (2 points) The texture below is stored in a 4 \times 4 “texel” array.

How will this texture look when mapped to a square of 3 \times 3 pixels? Draw and explain.